10
10
8
o
35. 2 cos
10.
12.
14.
16.
18.
20.
22.
24.
26.
28.
30.
32.
34.
36.
38.
40.
42.
44.
46.
48.
50.
9. -1 + 5i
6 .
U-25 - 25ł 13. -3 - 8z
15. 3(cos0 + zsinO)
/ 3 3
17. 3 ( cos -7r 4- i sin -7r
19. \/2 ^cos ^ 4- i sin ^
11 • • 11 21.2( COS — 7T + 2 Sin —7T 6 6
r ( 5 5
23. 5v 2 cos -7r 4- 2 sin -7r V 4 4
25. 2 [ cos -7r 4- z sin -7r
27. 2\/2 ( COS —■ 7T 4- 2 sin - 7T \ o 6
a/2 / 7 7
29. — cos -7r 4- i sin -7r
31. cos arctg 0 + i sin arctg ^
33. 3 | cos -^-7r 4- z sin ~7r ) o 6 /
a . . ol cos — + z sm — £ £ 37. 5y/2eiwi 39. 2e*ni 41. 4e«7ri 43. 16e^;'
45. \/26“4*
47. e°7 49. 2~6e7r' 51. 7
2 4- z
2-?
64
4(cos 7r 4-1 sin 7r)
1 / TT . . 7r\
4 cos — 4- z sin —
V2 ( -77T 4- i sin -^7r
n/ 5 . . 5
2 ( cos -7r 4- z sin -7r
\ 6 6
2(cosZL + isinI)
2 2 cos -7r 4- z sin -7r
6(c0S|+tsm|)
\/2 ( cos — 7r 4- i sin -7r \ 4 4
1 / 7T . . 7r\
-(cos- +I«nn-J
50 f cos — 4- z sin — 1
\ £ Z /
a/2 (cos (—+ aj +isin aj
2y/2eiKi
Ze***
y/Ze**'
8eoi
222ei«
2°e-T;
7
5325 |
54. -4 |
55. -5 |
"■-i |
57. 21/5 | |
59. 7 - i |
60. -3 - i |
61. 1 + 2i |
^ 53 9 . 10 10 |
63. x2 +y2 = 4 |
64. Sprzeczne |
65. x2 + y2 < 9 |
66. (x — l)2 4- y2 = 4 |
67. x2 + (y + 1)2 =9 |
68. (x - l)2 + {y + l)2 = 1 |
69. (x + 2)2 + y2 < 16 |
70. x2 + (y + 2)2 < 1 |
71. y = 0, x € H |
72. x,y G IR |
9 1 73. ir < l — 2x, x < -~ ~ 2 |
74. 16x2y2 < 1 |
75. (x - 2)2 + y2 = 4, z # 0 |
76. x2 + (y + 2)2 = 4, z / 0 |
77. x — y = 1 |
78. x = 2, y G E |
79. x = —1, y G E |
80. y > 8, x € R |
81. x2 = y2 |
82. xy = 1 |
83. x2 - y2 = 9 |
84. y2 — x2 = 1 |
85. x2 + y2 > 1 |
86. 1 < x2 + (y + l)2 < 4 |
87. x2 + 16y = 0, y > 4 |
88. (x - l)2 + (y - l)2 < 1 |
89. c = 1 |
90. c = 2 |
91. -1 - 4i |
«■! |
93. 12 |
94. -16 |
95. x = 1, y — 2 |
96- x = y - -24 |
97. x + 2y = 0, z ^ 0 |
98. x = —1, y = 0 |
7
99. x = —y = —4 6
Pokazać, że:
1- + Z2 = 2i + Z2