md. 2 Za pomocą macierzy odwrotnej rozwiąż równanie macierzowe:
a) AK + BX = X + A gdzie
' 1 |
0 |
1' |
2 |
-1 |
1 ’ | ||
A = |
2 |
1 |
1 |
B = |
-1 |
0 |
0 |
. 0 |
0 |
3 . |
. -2 |
1 |
0 . |
b) AX = BX — 21 gdzie
d) A — X • A — I
gdzie A =
0
-1
2
3
0
1
• 3 |
1 |
-1 ' |
’ 1 |
2 |
-3 • | ||
A = |
-2 |
2 |
2 |
B = |
-3 |
2 |
1 |
. -1 |
2 |
3 . |
. 1 |
1 |
1 . | ||
AX- |
B = |
A |
gdzie | ||||
‘ 1 |
3 |
5 ' |
’ -3 |
0 |
0 | ||
A = |
-1 |
0 |
-2 |
B = |
0 |
-3 |
0 |
. 1 |
1 |
1 . |
. 0 |
0 |
-3 |
$) XA - B * A ndzie
' 1 |
3 |
5 ‘ |
-3 |
0 |
0 | |||
A = |
-1 |
0 |
-2 |
B = |
0 |
-3 |
0 | |
. 1 |
1 |
1 . |
0 |
0 |
-3 | |||
XA = |
XB- |
21 |
gdzie | |||||
r 3 |
1 |
-1 1 |
1 |
2 |
-3 | |||
A = |
-2 |
2 |
2 |
S = |
-3 |
2 |
1 | |
. -1 |
2 |
3 . |
1 |
1 |
1 . |
g) XA + XB = X + A gdzie
’ 1 |
0 |
1 ■ |
2 |
-1 |
1 ' | ||
2 |
1 |
1 |
}. — |
-1 |
0 |
0 | |
. 0 |
0 |
3 . |
. -2 |
1 |
0 . |