skanowanie0001 (235)

skanowanie0001 (235)



15» POMIAR CZASU ZDERZEŃ KUŁ I WYZNACZENIE PARAMETRÓW DEFORMACJI

Parametry deformacji zderzających się kul

Zderzeniami sprężystymi kul nazywamy takie zderzenia, dlaj których spełnione są zasady zachowania pędu i energii mecha-J nicznej. W czasie tych zderzeń następuje sprężyste odkształ-j cenie stykających się powierzchni kul, ich energia kinetyczna przechodzi w energię sprężystą, a ta ponownie zamienia się w energię kinetyczną kul odbijających się od siebie.

W trakcie odkształcenia każda kula o średnicy d doznaje wgniecenia do wewnątrz w kształcie czaszy o promieniu podstawy r i głębokości h. Promień wgniecenia r (zwany także pro-* mieniem koła zetknięcia) jest określony wzorem:

(15.1)


r2= h ( d - h )

Ponieważ głębokość wgniecenia h jest mała, to (15.1) można sprowadzić do wzoru:

r


= /hd


(15.2)


Opisanemu odkształceniu sprężystemu towarzyszy pojawienie się siły sprężystości (2*4 ]:

F


s


4hrE


3(1-M2)


(15.3)


r


gdzie E - moduł sprężystości (moduł Younga) materiału, z którego wykonane są kule (patrz wzór (4.1)), u - współczynnik 1’oissona tego materiału (patrz wzór (4.2)).

W trakcie zderzenia kul ich odkształcenie przemieszcza się w kierunku ich wnętrz ze skończoną prędkością.. Ponieważ siła działająca między kulkami rośnie w przybliżeniu liniowo wraz I deformacją, wobec tego praca, którą trzeba wykonać w trakcie deformowania kuli, wynosi:

W = łFsmh = E. ■    <15-4>

gdzie Fgm - maksymalna siła sprężystości, h - maksymalna głębokość wgniecenia, E^- energia sprężysta zdeformowanej kuli.

Praca określona wzorem (15.4) jest wykonywana kosztem •nergii kinetycznej E^, jaką kula posiada w momencie zderzenia. W przypadku zestawu laboratoryjnego przedstawionego na rys. 15.1 i 15.2 energia ta jest równa różnicy AE^ •nergii potencjalnych kuli znajdującej się odpowiednio w najwyższym i najniższym punkcie

2

rav

Ek 2 AEp “ mgH '

(15

• 5)

gdzie

m - masa

kuli, vQ - prędkość kuli przed

zderzeniem,

g

* przyspieszenie

grawitacyjne, H - maksymalna

wysokość,

na

którą była podniesiona kula.

Korzystając z (15.4) i (15.5) znajdujemy

2mgH

V"!r- ♦    <15-6>

Jeśli dla uproszczenia rozważań założymy, że od momentu


Wyszukiwarka

Podobne podstrony:
45 (199) 15. POMIAR CZASU ZDERZEŃ KUL I WYZNACZENIE PARAMETRÓW DEFORMACJI Parametry deformacji zderz
fiz (25) - 151 -im gdzie 15. POMIAR CZASU ZDERZEŃ KUL I WYZNACZENIE PARAMETRÓW DEFORMACJI Parametry
skanowanie0003 (231) Wyznaczanie czasu zderzenia kul Do pomiaru czasu zderzeń kul wykorzystano badan
laborki z techniki nadawczej cw201 LABORATORIUM . URZADZEif IADAWCZYCH Pomiary rezonatorów lewar o
Metoda korelacyjna B Do wyznaczenia parametrów wytrzymałościowych wykorzystuje się nomogramy normowe
8.2. Wyznacz drugi składnik (składnik losowy) A/*, niepewności pomiaru czasu 10 wahnięć jako odchyle
Wyznaczanie pojemności kondensatora metodą pomiaru czasu rozładowania 1. Celem ćwiczenia było
WYZNACZANIE POJEMNOŚCI KONDENSATORAMETODĄ POMIARU CZASU ROZŁADOWANIA l.Opis ćwiczenia. W pomiarach
4.3. Wyznacz całkowitą niepewność pomiaru czasu 10 wahnięć tarczy jako: A^/ +A^ 0. 040 f 4.4.
8.2. Wyznacz drugi składnik (składnik losowy) A/*, niepewności pomiaru czasu 10 wahnięć jako odchyle
3 (394) 4.3. Wyznacz całkowitą niepewność pomiaru czasu 10 wahnięć tarczy jako: HSI 4.4. Wyznacz

więcej podobnych podstron