Skorzystamy z tego. że promień w punkcie styczności jest prostopadły do stycznej i że odn,, odcinki wyznaczone na stycznych przez punkty styczności są równe.
Oznaczmy r - promień okręgu.
Jedna z przyprostokątnych ma długość 5 + r. a druga r + 12.
Trójkąt jest prostokątny, więc korzystamy z twierdzenia Pitagorasa.
(5 + r)' + (r+ 12):= I7:
25+ 10r + r*'+r:+24r+ 144 = 289 2rJ+34r-120 = 0 |:2
r’ + 17r - 60 = 0
Aby znaleźć pierwiastki równania, rozkładamy trójmian na czynniki.
/'+ 17r - 60 = 0 r:-3r + 20r-60 = 0 (r:-3r) + (20r-60) = 0 r(r - 3) + 20(r - 3) = 0 (r - 3K r + 20) = 0 r - 3 = 0 lub r + 20 = 0 r = 3 lub r =- 20
Promień kola jest liczbą 2Tir = 2Jl • 3 = 6Jl
dodatnią, zatem r = 3.
Obliczamy obwód kola.
Odpowiedź: Obwód kola jest równy 671.
Wykaż, że dwusieczne kątów przyległych przecinają się pod kątem prostym.
Rozwiązanie:
Wykonujemy rysunek pomocniczy.
Suma miar kątów przyległych a, 180* - a - kąty przylegle jest równa 180*. Jeśli miara jednego z kątów jest równa a, to miara drugiego jest równa
180*-a.
Dwusieczna dzieli każdy z kątów 33 vh*a kąt> o równych miarach.
a 180* - et
2* 2
- miary kątów powstałych w wyniku pod/.ialu kątów przyległych dwusiecznymi
Mura kąta między dw usiecznymi a + 180* - a _ 180* _
ot równa sumie miar kątów 2 2 2
ległych. powstałych w wyniku ;> działu dwusiecznymi.
Wre/amy sumę miar tych kątów, kat o mierze 90* jest prosty.
Me równołegłoboku AZOR jest równe 128, tangensjego kąta ostrego jest równy -j. Wysokość A\V popro-
odzuoa z wierzchołka kąta rozwartego dzieli bok RO na dwa odcinki, takie, że | /?W|: | WO\ = 3:5. Oblicz wysokość równołegłoboku.
Kundazanic:
Wykonujemy rysunek pomocniczy.
|j»i = 3x,|łV0| = 5.v. gdzie .* jest pewną liczbą rzeczywistą dodatnią.
h
El.
w
Obliczamy długość podstawy | RO |3* + 5x = 8.v
nwBokgtoboku.^
Obkzamy pole równołegłoboku. 128 = 8.v h "nożąc pole jego podstawy pr/cz wysokość.
Katem ostrym równołegłoboku . h
jest np. kąt ARO. 3.v
Tongcns tego kąta to stosunek T = T" przyprostokątnej trójkąta 3/, _ j ^.
prostokątnego ARW
Wyznaczone x podstawiamy do wzoru napoić "*nolcgłoboku.
128 = 8* h 128 = 8- j -h
128 = 2h2 h = 64 h = 8(/j > 0)
< >■■> wiedź: Wysokość rów nołegłoboku jest równa 8.