9065956984114995440153504004271634309 o

9065956984114995440153504004271634309 o



Metody numeryczne. IS. Egzamin I termin. 2.07.2014r. C.r. C .

Zad. I.

1)    Dana jest liczba 11.24(IOł. Zapisz tę liczbę w znormalizowanym zapisie zmiennoprzecinkowym o podstawie 2

2)    Liczby stałoprzccinkowe Pokaż, jak obliczyć błąd bezwzględny i względny rozwinięcia dwójkowego o 6 bitach ułamkowych dla liczby 0,6<|0>.

Zad. 2.

1)    Zdefiniuj zadanie aproksymacji średniokwadratowej w przestrzeni l}p[a,b]

2)    Dla funkcji yfx pokaż, jak skonstruować drugi wielomian optymalny w sensie aproksymacji średniokwadratowej. wagą x na przedziale [0,1J.

Zad. 3.

1)    Zdefiniuj pojęcie kwadratury liniowej

2)    Co to są kwadratury Newtona-Cotesa? Jak wygląda ta kwadratura dla n = 1 i n = 2 dla funkcji/, gdzie n to liczba węzłów kwadratury0 (Uwaga- dla n = 1 węzłami kwadratury są krańce przedziału)


Wyszukiwarka

Podobne podstrony:
Egzamin z programowania 3 Imię i nazwisko: Zad. 9. Dana jest klasa class para {protected: float
Metody numeryczne - Wstęp Egzamin ma formę pisemną. Składa się z czterech zadań praktycznych
Podstawy statystyki, ekonomiki i organizacji (4) 3. Metody badań statystycznych. Podstawowym kryteri
Obraz7 (134) Zad.2. Dana jest sieć liniowa przedstawiona na rys. Korzystając z metody prądów Oczkow
Egzamin 06 07 (termin II) Egzamun poprawkowy z matematyki Wydział WILiŚ, Budownictwo, sem. 2, r.ak
Egzamin 06 07 (termin I) Egzamin pisemny z matematyki Wydział WILiŚ, Budownictwo, sem. 2, r.ak. 20
Egzamin 7 07 2011 (II) 07.9t.t0liALGEBRA 10/11 - Egzamin - Termin 3 iZadlW/tlp/ a) Stosuj*: metodę G
strona008 Egzamin I termin poprawkowy, Wydział Lekarski, r. akad. 2006/07; poprawne odpowiedzi na py
p22 Testy - [Metody Numeryczne VIII GiK - [199445, BARTŁOMIEJ MRUGAŁA]] Wyloguj 0:07:08 public na
1017084R754223396000572310833 n Egzamin 1 termin I rok Geodezja leśnaPiotr Rysiak Mazttlsko i Imię
Picture 008 Przykładowe zadania egzaminacyjne Metody Numeryczne cz. I Wyznaczyć interpolację f. skle
Image0005 (3) J.Stadnicki Optymalizacja- wykład dla Mechaniki, część4: PROGRAMOWANIE NIELINIOWE - me
Image0007 (3) X J.Stadnicki Optymalizacja- wykład dla Mechaniki, część4: PROGRAMOWANIE NIELINIOWE -
Image0008 (3) J.Stadnicki Optymalizacja- wykład dla Mechaniki, część4: PROGRAMOWANIE NIELINIOWE — me
Image0011 (3) J.Stadnicki Optymalizacja- wykład dla Mechaniki, część4: PROGRAMOWANIE NIELINIOWE - me

więcej podobnych podstron