A//TSZ
A 1/1*5
(>
(/A
5) convexity
Przykład 14
Dana jest obligacja z dwuletnim terminem do wykupu, o wartości nominalnej 100, oprocentowaniu 20%, w przypadku której odsetki płacone są co roku. Stopa YTM wynosi 15%, wartość bieżąca PV 108,13. W jednym z poprzednich przykładów obliczono już duration tej obligacji - 1,84 roku. Należy wyznaczyć wypukłość instrumentu oraz określić zmiany ceny przy wzroście stopy dochodu do 16% oraz spadku stopy dochodu do 14% a) bez uwzględniania wypukłości b) uwzględniając wypukłość.
„ _ / ^-*20 *2- 3- /f-2O
At
Przykład 15
Dana jest obligacja z dwuletnim terminem wykupu, o wartości nominalnej 100, oprocentowaniu kuponu 20%, w przypadku której odsetki płacone są co pół roku. Stopa dochodu w okresie do wykupu wynosi 15%. Należy wyznaczyć D, C oraz zmianie ceny przy wzroście stopy dochodu do 16% oraz spadku stopy dochodu do 14%, uwzględniając wypukłość.
/■<£■/CO ^-3 /tO 3 U-/CO U-y-MjO
c„=
c =
%loZC(Ci
/, o^r
/ItC** r /\AAA
A<X
Do =
D =
PV,
Ao
/co-3
AtQl^ "* Accąr*
/CO
-f
-f
A, as
Ao
i
•f
f
//(Of 3
Ao
-f
~ /!AOi A&AG
Określenie procentowych zmian wartości obligacji
YTM |
PV |
%APV |
Przybliżenie % A PV przy wykorzystaniu D |
Przybliżenie % A PV przy wykorzystaniu D i C |
15% |
108,13 |
- |
- |
- |
16% |
/'Q£. |
- /1.£ % |
- Al 5\f % | |
14% |
_ |
At,6JZ0/o |
J.e % |
%Apv =
roczne
don? £^%Apv =
po wzroście YTM:
— /f(^f53 • ^ — + A{£AA ~=
A OOf ,
-
-qot£At<
20