Karta wzorow na egzmain z biofizyki WL I 2015


Zestawienie wzorów BIOFIZYKA -EGZAMIN 2014/15 WL I
STAAE FIZYCZNE I WZORY
nazwa wartość Jednostka Symbol
Liczba Avogadro 6.0221367 x 1023 mol-1 NA
magneton Bohra 9.2740154 x 10-24 JT-1 źB
Stała Boltzmanna 1.380658 x 10-23 JK-1 k=R NA
Aadunek elektronu 1.602177 33 x 10-19 C e
Masa spoczynkowa
9.1093897 x 10-31 kg me
elektronu
Stała Faradaya 9.6485309 x 104 Cmol-1 F
Przyspieszenie
9.80665 msec-1 g
grawitacyjne
Stała gazowa 8.314510 Jmol-1 K-1 R
Podstawa
logarytmu 2.71828 - e
naturalnego
Stała grawitacji 6.67259 x 10-11 m3kg-1s-2 G
Przenikalność
magnetyczna 4p 10-7 VsA-1m-1 źo
próżni
Przenikalność
8.8541878 x 10-12 Fm-1 eo
elektryczna próżni
Pi (Ą) 3.141592654 - p
Stała Plancka 6.62659 x 10-34 Js h
Stała Rydberga 1.0973731534 x 107 m-1 Rc
Prędkość światła
2.9979246 x 108 ms-1 c
w próżni
Prędkość dzwięku
331.4 ms-1 -
w powietrzu
Stała Stefana-
Boltzmanna 5.67051 x 10-8 WK-4m-2
s
Stała Wiena 2.910-3 mK b
1
n
T
d X = X - X0 X0 X - DX , X + DX
T1 +T2 +T3 + .....+Tn i=1 i
T ==
nn
n
sT
(T -T )2
sT =
(T1 -T )2 + (T2 -T )2 +ź+ (Tn -T )2 i=1 i
sT == n
n -1 n -1
m
śf (A1, A2,ź, Am )
F = f (A1, A2,ź, Am) DF = ą DAi
F = f (A, B,C,ź) = Aa Bb Cc ....

śAi
i=1
DA DB DC ł
DF = ąF a + b + c + ...ś
ę
A B C

l d 1
l
p = pob pok z =
am =
fob fok amin
2 n sin u
1 2 nsinu 2 A sin 5 5c1
zm = = = 500 A < p <1000 A
= = 5[2,1
am l l
sin 5ż 5c2
Prawo Hagena - Poiseuille
Prawo Stokes'a
Siła równoważąca siłę lepkości
Dv p r4 Dt dV -obj. cieczy przepływającej laminarnie
R = 6p r vhR- siła lepkości
F =h S DV = Dp
dp- różnica ciśnienia na końcach przewodu
Dx 8l h
l - długość naczynia
Lepkość właściwa roztworu:
Lepkość roztworu w którym cząsteczki mają kształt
h hwł h
ć
graniczna liczba lepkościowa:
lepkość względna - 1
hwł = -1 = 1+ 2,5Śkulisty
h =
[ ]
lim
c - stężenie dążące do 0
n0 - lepkość rozpuszczalnika
h0 c0 h0
c o - Vc/Vr (współczynnik objętościowy roztworu)
Ł ł
n- lepkość roztworu
objętość cz. sub. rozpuszczonej/obj. całkowita roztworu
 - ciśnienie powierzchniowe
h t r
hwł NA 3 M
ć
S- pole warstwy monomo.
Pomiar lepkości względnej za pomocą wiskozymetru
Pozwala obliczyć V =
h = h
[ ] [ ]
lim = 2,5 v 4/3Pir^3-> r = 3
cząsteczek sub. rozpuszczonej c0 h0 t0 r0 p - gęstości cieczy badanej i wzorcowej
cM 10p NA k- stała Boltzmana
Ł ł
T - temp. bezwzględna
t- czas przepływu przez wiskozymetr
r
5P " 5A0 n- liczba cząsteczek tworząca warstwę
Gęstość względna
= 1+ 0, 23c s S = N kB T = const
p 5[ = " 5I
c - stężenie roztworu
monomolekularną
r0
5@
w g/cm3
c- wyrażone w masa/obj
S -powierzchnia warstwy momomole.
5F 5F " 5@
4 " 5`0 d- średnica cząsteczki warstwy mono.
5F = 5[ " 5`0 n- liczba kropel 5`0 = =
"
5Q =
s0- średnie pole przekroju poprzecznego cząsteczki 5[ 5P " 5A0 " 5I
5
 - napięcie powierzchniowe
F=Q (ciężar kropli) ---> *l= d*V*g/n
F- siła wypadkowa napięcia powierzchniowego
Praca potrzebna do zwiększenia powierzchni F d V g
--> gdzie: l= 2Ąr
s = (działająca na cząsteczki w cieczy -pociąga je do s =
W = s DS
swobodnej cieczy dS
n-liczba kropli
wnętrza cieczy) \~|l- dlugość odcina wzdłuż
l 2p r n
 - napięcie powierzchniowe
Po przekształceniu:
którego zaczepione są siły wypadkowe
l- długość cz. warstwy mono.
5P " 5I 5I " 5P
5I5d
c- stężenie roztworu, jako stosunek
Vw- obj. warstwy mono.
5I5d = 5Y =
5Y =
masy sub.rozpuszcz do obj roztworu
S- pole powierzchni warstwy
5 5 " 5F
5F
mon,
Wyznaczanie względnego napięcia
Obliczanie  metodą wzniesienia włoskowatego
s n0 d
r h d g
2s
Prawo Laplace'a
= cieczy w stalagmometrem h- wysokość słupa cieczy w kapilarze
s =
Dp =
Zmiana ciśnienia dla powierzchni sferycznych.
s0 n d0 n-liczba kropel w V cieczy
2cosa r- promień menisku
R
w stalagmometrze
R- promień krzywizny
d- gęstości
ciśnienie powierzchniowe =
F
s = s0 -s
sp =
wody- warstwy pokrytej
p
l
warstwą monomolekularną
dw dw
4Vw 4cm Vk M
dcz = =
lcz = =2
2
ncz cm Vk NA p dw p dw r
u- ruchliwość jonów
R T v
Ve -Vr = DVe = DV0 + ln cj u = v- prędkość unoszenia się pod wpływem przyłożonego pola
5@5R ! 5@5R5g+ + 5g " 5R-
E- natężenie tego pola
z F E
Ve- Potencjał elektrodowy
Vo - potencjał standardowy elek. zanurzonej
vd - Potencjał dyfuzyjny:
ć
u+ - u- R T c1
w roztworze 1mol/dm3
c1/c2 - stężenia V2 -V1 = DVd = ln E = DVe1 - DVe2

u+ + u- z F c2 ł c- stężenie kationów
Ł
ć
R T c1
Vkal - elektroda kalomelowa -wzorcowa 0,25V
E = ln E = DVe - DVKal

z F c2 ł
Ł
Prawo Ficka:
dn dc k T
Wzór na D dla cząsteczek sferycznych
dx- średnie przemieszczenie dyfundujące cząstki
= -D S D-współczynnik dyfuzji [m2/s] D =
Dx2 = 2 Dt
dn liczba moli sub. rozpuszczonej,
dt dx 6p r h
przemieszczającej się w czasie dt,
C- stała układu pomiarowego [1/m2]
przez pole S jest proporcjonalna
dn c0 2 A
= P S (c1 - cdo gradientu stężenia dc/dx C = A- powierzchnia błony
)
c2 = (1- e-CDt )
2
V - objętość roztworów
dt V dx
2
Wzór na stężenie roztworu poddawanego dyfuzji
dx- grubość błony
C- stęż zanieczyszczeń podczas dializy
ć
c0
ln = C D t
c = c0 e-kDt c0- st. początkowe c = c0 e-kE t Ke - współczynnik charakteryzujący szybkość

elektrodializy
c0 - 2c2 ł
KD - współczynnik charakteryzujący
Ł
Po zlogarytmowaniu
szybkość dializy
2
ln 2 0,693
c0
-kE t1/2 >>>logarytmowanie >>>
kE =
= c0 e
t1/2 t1/2
2
prawo Lamberta:
E = Eel + Eosc + Erot h = E2 - E1 = DEel + DEosc + DErot
P = P0 e-kd
P - moc promieniowania po przejściu przez
k- współ. osłabiania dla roztworów nie zmieniających
absorbent
budowy wraz ze zmianą stężenia
P Po - moc promieniowania padającego
T - przepuszczalność
t =
a - współ. absorpcji k = al c prawo Lamberta - Beera
k- współczynnik osłabiania (zależy od )
t = e-al cd
P0
(zależy od  i T)
d- grubość absorbentu
A- absorbancja
c- stężenie
I - natężenie wiązki światła opuszczającej polaroid
A- kąt skręcenia płaszczyzny polaryzacji
A =-logt A = el cd E=a*ln
5< = 5<0 " 5P5\5`25ż
Io- natężenie wiązki padającej
c- stężenie roztworu, l - grubość roztworu
B - kąt pomiędzy wiązką padającą a wychodzącą
[ ]l
5 = 5 " 5P " 5Y [A] - skręcalność właściwa; zależy od: T i dł. fali świetlnej
+-
h = Ek + m0 p c2 + Ek + m0e c2
h = Ek +W h = Ek + h '+W
pozyton elektron
m ln 2 0,693
mm = d1/2 =
I = I0 e-md
r
m m
ln a = ln a0 - m d
a = a0 e-md
Ip - Progowe natężenie bodzca
Q - ilość ładunku wprowadzonego na
1
J- gęstość prądu I I Dt DQ R - reobaza: CH- chronaksja
jednostę powierzchni S
I = (CH R) + R
J = J Dt = =
p dt - czas trwania bodzca
I- natężenie
Dt
S S S
S- pole powierzchni elektrody
5] - ( )
!1 + !2 + !3 e" 5]5_ 1
!1  
5f = 5]1Ł5]2 5f = 5]Ł(!2!3) 5f = {
5] - ( )
!1 + !2 + !3 < 5]5_ 0
5KŁ1 = 5K 5KŁ0 = 0 5KŁ5K = 5K
5K1 = 1 5K0 = 5K
5KŁ5K = 0
( )
5K5K = 0 5KŁ 5L5M = 5KŁY5KŁZ
5K5K = 1
( )
5f = 5] - 0,3 " !1 + !2
( ) ( )
5K5L = 5KŁ5L 5KŁ5L = 5K5L
I - natężenie,
p - ciśnienie akustyczne (rónica pomiędzy ciśnieniem wywołanym
I -natężenie fali
E - e. przenoszona przez falę "58 5C
falą a ciśnieniem w środku nie zaburzonym)
5] = 5 " 5P " 5
S- powierzchnia prostopadła 5< = = 1 5]2 p- ciśnienie akustyczne
rho- gęstość ośrodka
do kierunku rozchodzenia się fali "5a " 5F 5F
5< = "
v- chwilowa wartość drgań cząsteczek ośrodka
5< 2 5 " 5P
P -moc fali [W/m^2]
5]
5? = 5Y5\5T10
5?5] = 2 " 5Y5\5T10
5<0
5< 5H
L-Poziom natężenia
5]0
5? = 10 " 5Y5\5T10 = 20 " 5Y5\5T10
Io-próg słyszalności 10^-12 W/m^2 Lp- poziom ciśnienia akustycznego [B]
5<0 Uo- napięcie generatora5H0
Po - 10^-5 Pa
F- Malejąca siła naprężenia mięśnia
Fo-siła jaką wywiera mięsień w momencie naciągnięcia tau- czas relaksacji
dl - przyrost długości mięśnia
"5Y = 55] " 5a
teo - czas relaksacji n- współczynnik lepkości
vp - szybkość płynięcia
-5a
5
E - moduł sprężystości
t -czas
5 5 =
59 = 590 " 5R
58
1
-5a
1 1
u - współczynnik kierunowy -
5 =
Pmaks = Fmaks vmaks
"5Y = "5Y0 " (1 - 5R55Q)
5b
3 3
Vmax- max szybkość skurczu mięśnia
l- max. przyrost modelu przy danym obciążeniu
tau- czas opóznienia wydłużania
RQ- współczynnik oddechowy
Q - ilość ciepła [J] wydzielanego przez zwierzę o masie m [kg] w ciągu 24h
w-równoważnik energetyczny tlenu
Q- wyprodukowanie ciepło
{ } { }
5I565B2 lg 5D = 5,44 + 0,756 " lg 5Z ą 0,05
V - zużyty tlen 5D5]
5E5D =
5d =
5I02
"V
5I02
P =  " w  =
P- szybkość przemiany materii (moc)
t
w - równoważnik e. tlenu [20,2kJ/l] v- szybkość zużycia
v-szybkość zużycia tlenu tlenu
Konwekcja
Prewodzenie
"T
dx - odcinek na którym przewodzone jest ciepło
Ś ŚK ŚR ŚP ŚT ŚK ą S (Tc To ) ŚT  S
"x
Promieniowanie
ŚR   S (Tc4 To4) ŚP k S ( ps po ) Parowanie
 - stała Boltzmana
p - ciśnienie cząstkowe pary wodnej skóra/
otoczenie
5>5M5F > 545M5F
5N
545B5F > 5>5B5F 5D = 5V " 5a = 5P5\5[5`5a 5V = + 5O
5a
Wartość progowa akomodacji [mA]
5d5]5N (5Z54)
r- reobaza
5 =
alfa-współczynnik akomodacji
5_ (5Z54)
zwyrodnienie/choroba -3-6 dobrze, powyżej 6 nerwica
"5I
"5I "5I
"5I = 5F " "5Y
5D =
( ) = ( )
"5a
"5a "5a
1 2
3
5 " 5_4
5D = "5]
8 " h " 5Y
1
5F1 " 5c1 = 5F2 " 5c2 = 5P5\5[5`5a
5]5Q = " 5 " 5c2
2
"5]
1 1
2 2
5]5`1 + 5 5T!1 + 5 " 5c1 = 5]5`2 + 5 5T!2 + 5 " 5c2 = 5P5\5[5`5a 5E5A =
2 2
5D
Liczba Reynoldsa
R - opór naczyniowy
v- prędkość rozchodzenie się fali mechanicznej
2 " 5_ " 5c " 5
N<2000 - laminarny 5> 8 " h " 5Y
n- lepkość
5A5E =
2000-3000 - nieustalony 5c = " K- moduł sprężystości objętościowej ośrodka 5E5A =
h rho- gęstość
5 5 " 5_4
N>3000 burzliwy
Wzór Moensa - na prędkość rozchodzenia się fali
K - dla naczyń sprężystych
"5]
58 " 5Q tętna
58 " 5Q
5> =
5> = E - moduł Younga F - określa wpływ okolicznych tkanek na prędkość
"5I 5c5a = 59"
d- grubość naczynia
2 " 5E
2 " 5E fali tętna
R- promień naczynia
5I
K- moduł sprężystość
5Q5I
"5I = 5F " 5Q5Y
5D = Wyraża stosunek zmiany ciśnienia
do względnej zmiany objętości
5Q5a
5Q5I
5Q5I 5Q5I 5F " 5Q5Y
5c5] =
= 5F " 5c5] 5F " 5Q5a =
5Q5a 5Q5a 5Q5a
R- refrakcja Dkom- zdolność skupiająca
1
1
Sd- pnkt daleki soczewki kompensacyjnej
57 = 571 + 572 - 5Q " 571 " 572 5E =
575X5\5Z =
D- zdolność skupiająca 5`57
5?
d- odległość pomiędzy soczewkami
1 1
t- czas relaksacji (szybkość zaniku polaryzacji)
54 = - A - amplituda akomodacji
5E = 57 - 575X5\5Z 5`57 5`55 Sd- odległość punktu dalekiego zależy od:
Sb- odle. od pkt bliskiegi
n- lepkość, r- wymiarów cząstki (promienia), T-temp.
k- stała Boltzmanna
K - przewodność elektryczna właściwa
P- wektor polaryzacji
4 " 5 " h " 5_3
(konduktywność) [1/*m] miara możliwości
1 5^
q- ładunek [C]
5 =
poruszania się swobodnych ładunków pod
k = 5C =
S - pole powierzchni 5X " 5G
wpływem przyłożonego pola ele. 5 5F
 - opór elektryczny właściwy
k k5X
k5\ - 1 k5\ - 1 Wzór Maxwella na
Współczynnik polaryzacji
5E104 5I5X5_5d5V5[5R5X
Hematokryt = F " hematokryt
k
R - opór mierzony przy danej k5X
5> = F =
częstotliwości
5E106 5I5X5_5d5V5[5R5X+5\5`5\5P5g5N
k5\ + 2 k5\ + 2
prądu zmiennego
K - przewodność właściwa
( )
2 " k5\ - k
5Y 1 5Y 56
Hematokryt dla niskich częstotliwości prądu
C- stała naczynia czyli l/S
F =
5E = 5 " = " k =
bo wtedy Kk/Ko jest znacznie mniejsze do 1
R- opór
k + 2 " k5\
5F k 5F 5E
R - opór (np. naczyniowy?)
rho - opór elek. właściwy
l- długość przewodnika (np. odległość między elektrodami)
Zwór do obliczenie Stałej naczynia na
56 = k5d5g " 5E5d5g S- pole przekroju (np. elektrod.)
podstawie wzorcowych wartości K i R
G- entalpia swobodana
dU= zmiana e wew.
H- enalspia
Q - ciepło
dS zmiana entropii S=Q/T
q- zmiana ladunku elek
praca obj.
W- praca
T- temp
pV = nRT DU = Q +W DU = TDS - pDV + FDl + mDn +fDq
DG = DH -TDS
F- energia swobodna
R - stała gazowa, n -liczba moli, x-ułamek molowy
U- energia wew.
u - potencjał chemiczny
Gi = Gi0 + RTni DGi = mDni
DF = DU -TDS Gi = Gi0 + DGi G - entalpia swob po zmieszaniu ln xi u - potencjał chemiczny mi = mi0 + RT ln xi
uo-pot. standardowy
Pi - ciśnienie osmotyczne
dn- zmiana ilości składnika
Go- przed zmieszaniem
fi - współ. somotyczny
mi = mi0 + RT ln ci p =j i RT cm albo p =(j i cm )RT Dp = RT cz - cw Różnica ciśnień osomtycznych. wew i zew. naczynia.
( )
i - liczba jonów utworzona po dysocjacji cząstki rozpuszczonej
Wzór dla rozcieńczonych roztworów
R- stała gazowa
ć
Ps.rozpuszczona
dV dV
Filtr.
p =sj RT cm = LVs Dp s = JV = LV

1- PH O dtS = LV Dp albo J - strumień objętości Dp
sigma - współ. odbicia
Sdt
Przepływ wody spowodowany Ł 2 ł
L- współ. filtracji (przewodność hydrauliczna)
sigma= Wsół. odbicia Stavermana
różnicą ciśnień osomtycznych
Jd- gęstość strumienia objętości
P- przpuszczalność
Lv-przewodnosć hydrauliczna
Ldv- współ. ultrafiltracji
Ld- współ. filtracji
H2O osmoza H2O
JD = LDVDp + LDDp JV = JV ą JVfiltracja JV = LV Dp - LVsDp
Hipoteza Starlinga- transport wody przez ścianę kapilary
H2O
JV = LV [ - -s (p -pt )] GFR = K [( pGC - pT ) - (pGC -pT )]
pp pt p
( )
f
J - całkowity strumień przez ścianę kapilary
GFR - filtracja kłębuszkowa
Pp- ciśnienie hydrostatyczne wew. kapilary
Kf- współ. ultrafiltracji kłębuszkowej
4
Pt- ciśnienie hydro. śródmiąszowe
Pgc/t - ciśnienie hydrostatyczne w kłębuszkach/kanaliku prostym
Pi - ciśnienia osmotyczne (onkotyczne) w kapilarze/śródmiąszowe
Pi- ciśnienia osmotyczne
Ułamek molowy - jest to rodzaj miary stężenia, który jest stosunkiem liczby moli danego składnika mieszaniny lub roztworu do sumy liczby moli wszystkich składników.
+ + +
ć
łin łin łout
PK + PNa + PCl
RT c1 x (c2-x) RT
K Na Cl

DV = ln = DV = ln
+ + +

F c2 (c2-x) (c1+x) F łout łout łin ł
PK + PNa + PCl
K Na Cl
Ł
in out
-1 +1
ł ł
Cl K
out in
-1 +1
ł ł
Cl K
GNa (VNa - Vm) + GK (VK - Vm) + GCl (VCl - Vm) = 0
out in
+1 -1
ł ł
RT RT
G G G G
K Na Cl Ca K Cl
= + + + DV = ln = ln
V V V V V
m K Na Cl Ca
in out
+1
FF
G G G G
T T T T
K ł Cl-1ł

t -x
-
ć
rm
t l
Vm = TKVK +TNaVNa +TClVCl +TCaVCa Vt = VMax 1- e t = rm cm Vx = V e l =

ri
Ł ł
1
DG = DWb + DW0 + DWe + DWm + DQi cs = co - p = co e-k t v = k1 cs v = bcA cB
10Ea
DSa - Ea
2
vT +10
kB T 2
R B
v = bcAcB b = B e e Q10 = Q10 @ ek T Ea = 0,1kB T ln(Q10)
vT
b
4
P = ST PE - PA = s S(T14 -T24) l = b = 0.0029K m
T
DQ DQ mkrwi cwl.krwi
= Kkonw.S TS -TA P = Kkonw.S TS -TA P = = (Ttkanki -Tkrwi _tętniczej )
( ) ( )
Dt Dt Dt
DQEV = KEVS pS - pE
( )
Dt
dV dV S dl
Q = = const. dV = S dl = = S v = const. S1v1 = S2v2
dt dt dt
11 dV p r4 Dp 8hl
22
pT = p1 + rgh1 + v1 = p2 + rgh2 + v2 = const Q = = Dp R = R =
22 dt 8h l Q p r4
F -siła równoważąca siłę lepkości
2r v r dv n - współczynnik lepkości
Re- liczba reynoldsa
Re = F =h S dv- prędkości cieczy
dx - odległość między poruszającymi
h dx
się warstwami cieczy
S- pole powierzchni warstwy cieczy
E- moduł Younga [N/m^2]
p- naprężenie T-naprężenie sprężyste
dl/l - zmiana długości F - siła styczna do ściany
K- moduł sprężystości objętościowej
do długości początkowej l- długość na której działa
ć
p p p F 1 1 E h
sila
E = K = G = T = pt = T + c0 = F

DL DV
j l r1 r2 2 r R
Ł ł
G- moduł ścinania (sztywności)
pt- ciśnienie transmuralne
c0 -prędkość fali tętna [5-8m/s]
L0 V0
T - naprężenie sprężyste
E- moduł Younga
r - promień naczynia
rho -gęstość
1 1
2 2
r- promień naczynia
WL = pL DV + vLrDV WR = pR DV + vRrDV
h- grubość ściany
2 2
Praca komory prawej
Wl - praca komory lewej (objętościowa + kinetyczna)
pp=1/6pl- ciśnienie dV-70cm3
71
P = pLS Q + r v2 Q Dp = Q R CO(L / min) = HR(uderzenia / min) SV(L / uderzenie)
CO - cardic output - rzut serca - pojemność minutowa serca
62 dp-średnia różnica ciśnień
HR - heart rate - rytm serca - 72uderzenia
100mmHg
P- moc całkowita serca
SV- objętość wyrzutowa - 70ml
Q- strumień objętości serca
Q - strumień objętość krwi czyli 5,5l/min
5l - 60sek
70ml (V serca) - 0,84sek
---> Q= 70/0,84=83l/s
5
m- masa ciała.
k
(zmienna fizjologiczna)X i k -wyznaczane doświadczalnie
=b
X = k mb log X = log k + blog m CO = 0.108m0.98 HR = 282m-0.32
HR- rytm serca
CO- rzut serca
m- masa
m - masa
DV
f- stopień tłumienia ~
C = f = 1+ 2p TPRC Prawo Henriego- Stężenie gazu rozpuszczonego w cieczy, w danej
( )
TCR - całkowity opór naczyniowy
temperaturze jest wprost proporcjonalne do ciśnienia gazu będącego w
Dp
C- podatność
równowadze fazowej z tą cieczą.
C - podatność (duża dla żył, mała dla tętnic)
Vg- obj. rozpuszczonego gazu
dV- zmiana objętości
Vl - obj. cieczy
dp - ciśnienie transmuralne (różnica pomiędzy wew a zew.)
Vg/Vl - stężenie rozpuszczonego gazu
p- ciśnienie parcjalne gazu nad cieczą
alfa-współczynnik rozpuszczalności [1/Pa]
Prawo Daltona - całkowite ciśnienie gazu jest równe
dVt- objętość oddechowa (wprowadzana do płuc)
ciśnień gazów wchodzących w skład mieszaniny
Vg
DVt DV
wentylacja = pV = n RT p = pN + pO + pH O + pCO = a p = f VT
2 2 2 2
Dt Vl Dt
Wentylacja =f- częstotliwość *Vt -obj. oddechowa

pusta - ppecherzyki
2s a T ADp V- szybkość dyfuzji gazu w poprzek pęcherzyka
Dp = R = W = pDV V =
a- współczynnik dyfuzji

r Praca oddechowa T- temp
MW L h
Prawo Laplace'a
V
p -ciśnienie A- powierzchnia
dp- zmiana ciśnienia
R - opór przepływu powietrza
dV- zmiana objętości dp- różnica ciśnień
sigma- współczynnik napięcia
p -ciśnienia
MW - masa cząsteczkowa gazu
powierzchniowego [1/N]
V- prędkość przepływu =
L- długość drogi dyfuzji
r - promień
objętość/czas
n- lepkość
F nI I N
B = H= H= B = m0 mr H m0 = 4p 10-7
q v l 2p r A2
Ep
E DV
E = E = - V = dB A dB qB
E = -v B DV = A I = f =
q d q
dt R dt 2p m
m2 m1
-
(W m)
e2 e1 e1 - e2
W
B = m H r = Er = rE0 SAR ==
t r V t
m2 m1 e1 + e2
+
e2 e1
s 2
SAR = Et
2 r
Dn Ej
hc DE q2
2
Ix = CZIU lmin = LET = = LET ~ N Z
eU Dl Dl v2
D
-
DD DX N
D37
D = X = H = Q D Hef = HT = e DT = f X
w
T
Dt Dt N0
T
Dhipoksja
N
OER = = Fryzyka Heff
Dnormaln e N0
Ir E
4 2
aR = kR f aT = kT f R = T =1- R v = Z = d v Z = d E
I0 d
n
ć
f v 2 f s
aT = a1 fr = fe ć1ą Df = cosq

f1 c v
Ł ł
Ł ł
6
ź - źwody
I1 - I2
CTnumber=1000 [H] C = =1- exp -(m2 - m1)x2
[ ]
źwody I1
1 1 1 T1/2 Tb
= + Te =
Te T1/2 Tb T1/2 +Tb
t
-
T2 T1 g h B0 1
T1
L = + DE = h fL = f = g B0 ML = M (1- e )
L
T2 norm T1 norm 2p 2p
( ) ( )
t
-
T2
M = M0 e
T
7


Wyszukiwarka

Podobne podstrony:
Karta wzorów na kolokwium
karta wzorów nie mozna miec tego na maturze
Karta wzorów
Prezentacja ze stopami zwrotu z funduszy na dzień 31 08 2015
Informatyka karta wzorow
Karta próby na stopień Ćwika
karta wzorow
Wprowadzanie wzorow na v,r,en elektronow
001 Karta wzorów
Matematyka karta wzorów
Karta wzorów makro
Karta zgłoszeniowa na szkolenie w zakresie obsługi maszyn budowlanych
karta wzorow

więcej podobnych podstron