Proste pochodne
Wzory: |
Przykłady: |
(c)' = o |
(2)' = 0 (100)' = 0 |
(ax)' = a |
(*)' = ! (3ar)' = 3 |
(xn)' = nxn~1 |
(a;3)' = 3a:2 (x5y = 5x4 |
(2)'—4 |
(1)' =__L V x ) X2 (-)' = --% \x) xz |
<D II CD | |
(ax)7 = ax Ina | |
(lnx)/ = — X (,0e°Z>' = .!„« |
(log2 x)’ = - |
Oogó*)' = jh
Wzory:
{f+9)' = f' + 9' U-9)' = ? -9' (c • /)' = c • /'
(f-gy = f,g + fsf
Działania na pochodnych Przykłady:
(a:2 + a;3)' = (x2)' + (a:3)' = 2x + 3x2 (x4 — x)' — (x4)' — (x)' — 4x3 — 1 (5a:3)7 = 5 • (a;3)7 = 5 • 3x2 = 15a;2 {x2\fx)' = (x2)'\/x + x2{\Jx)' =
= 2x\[x + a:2
x2
= 2xy/x + —~j=
2\Jx
f'9-fg'
\g) g2
_ 2a; \fx — x2 _
X
Pochodna funkcji złożonej
[/(»)]' = /' V
((2® + l)3)' = (y3y = 3y3-1 ■ y' = 3y2 ■ y' =
= 3(2a: + l)2 • 2 = 6(2a; + l)2 gdzie y = 2x + 1, y' = 2
2 \/a;3 — 2a; 2\/a;3 — 2a;
gdzie y = x3 — 2x, y = 3a;2 — 2
(e*2)' = (e*7)' = ew • y' = ex2 • 2a: = 2a:ex2 gdzie y = x2, y' = 2x
Zadania + Rozwiązania
(sina;)' = cos a;
Pochodne funkcji trygonometrycznych 1
(cos a;)' = — sina;
(arc sin a:)7 = ------
(arc cos a:)7 = -
\/l — x2
(tg *)'
(ctg x)' = --
(arc tg x)' — (arc ctg x)' =
tg x + 1
1
= —(ctg2 x + 1)
1
1 + X2 -1
1 + X2