Proste pochodne
Wzory: |
Przykłady: |
(c)' = 0 |
(2)' = 0 (100)' = 0 |
(ax)' = a |
(*)' = ! (3x)' = 3 |
(xn)' = nxn~1 |
(x3)' = 3x2 (x5)' = 5x4 |
(-)'=-4 \x/ a:42 |
(i)' = -£ (!)' = -£ |
^'-275 | |
(e*)' = ex | |
<3 H <3 II H 3 | |
(In x)r = — X (los-I) %h. |
1°g2a;= nb loSs^ = nb |
Pochodne funkcji trygonometrycznych
(sina:)' = cos a; (cos a:)' = — sin x
(arc sin x)' = (arccosx)' =
(tg x)' = -J— = 1 + tg2 x
(ctgx)' = —-r- = -(1 + ctg2 x)
1
\/l — x2 -1
(arc tg a:)' = (arc ctg a:)' =
1
1 + x2 -1
1 + X2
Działania na pochodnych Przykłady:
(x2 + x'!)' = (x2)' + (x3)' ~= 2x + 3x2
(x4 — x)' = (x4)' — (x)' = 4x3 — 1 (5x3)' = 5 • (x3)' = 5 • 3x2 = 15x2 (x2v^)' = (x2)'v/x + x2(v/x)' =
■= 2X\fx + X2 • -r= -
2 sjx
= W*+VS
"05 1 1 |
(X2\ |
J 92 |
>
x(2 Jx-x-zK=) r
—-
X 2yjx
Pochodna funkcji złożonej ((2x + l)3)' - (y3)' = 3y3-1 ■ y' = 3y2 • y' = = 3(2x + l)2 • 2 = 6(2x + l)2 gdzie y = 2x + 1, y' = 2
•2/
1 (3x2 — 2) =
2 \Zx:l - 2x 7 2\/x3""
gdzie y = x3 — 2x, y' = 3x2 — 2
(e*2)’ = (ey)' = ey ■ y' = e*2 • 2x = 2xe*2 gdzie y = x2, y' = 2x
-2 — 2x
Zadania Rozwiązania