plik


ÿþListy zadaD do kursu Analiza Matematyczna 3.1, MAP1158W. W2/PWr Lista 1 _____________________________________________________________________________________________________________________________ 1.1. a) Z pewnej substancji radioaktywnej po upBywie 4 lat zostaBo 20 gram, a po upBywie dalszych 4 lat tylko 4 gramy. Wyznaczy mas substancji w chwili pocztkowej. b) Polon-210 ma okres poBowicznego zaniku równy 140 dni. Znalez mas tego pierwiastka po 100 dniach, je|eli jego masa pocztkowa wynosiBa 200 g. c) Okres poBowicznego zaniku pewnego pierwiastka promieniotwórczego jest równy 100 lat. Ile procent masy pocztkowej tego pierwiastka pozostanie po i) 10, ii) 50, iii) 200 latach? 1.2. Sprawdzi, |e podane funkcje s rozwizaniami wskazanych równaD ró|niczkowych na zadanych przedziaBach: 1.3. Sprawdzi, |e dla ka|dego C " R podane funkcje s rozwizaniami wskazanych równaD ró|niczkowych, a nastpnie znalez rozwizania speBniajce zadane warunki pocztkowe: 1.4. ScaBkowa podane równania ró|niczkowe o zmiennych rozdzielonych: 1.5. Dokona analizy rozwizaD równania ró|niczkowego y2 t = ky w zale|no[ci od rzeczywistego parametru k. Naszkicowa krzywe caBkowe tego równania. Lista 2 _____________________________________________________________________________________________________________________________ *2.1. Wyznaczy rozwizanie równania ró|niczkowego žà1ƒàt2Ÿà y ' t=1ƒà y2 z zadanymi warunkami pocztkowymi: a) y(1) = -1; b) y(1) = 1. Poda przedziaBy, na których s one okre[lone. 2.2. Rozwiza podane zagadnienia pocztkowe dla równaD ró|niczkowych o rozdzielonych zmiennych: 2.3. ScaBkowa podane równania ró|niczkowe jednorodne: 2.4. Rozwiza podane zagadnienia pocztkowe dla równaD ró|niczkowych jednorodnych oraz wyznaczy przedziaBy, na których s one okre[lone: 2.5. Znalez krzywe, dla których trójkt OSY (rysunek) utworzony przez o[ Oy, styczn i wektor wodzcy punktu styczno[ci jest równoramienny (o podstawie OY ). Lista 3 _____________________________________________________________________________________________________________________________ 3.1. Rozwiza podane równania ró|niczkowe liniowe niejednorodne: 3.2. Wyznaczy rozwizania podanych zagadnieD pocztkowych dla równaD liniowych niejednorodnych oraz poda przedziaBy, na których s one okre[lone: 3.3. Dla równania liniowego niejednorodnego y2 + py = q(t), gdzie p " R wyznaczy rozwizanie Õ(t) w podanej postaci, je|eli: 3.4. Znalez rozwizanie równania ró|niczkowego liniowego niejednorodnego t2 y 2 ƒà y=žàt2ƒà1Ÿàet lim y žàtŸà=1 speBniajcego warunek . t Œà -" *3.5. Znalez rownanie krzywej przechodzcej przez punkt (1,1), dla której pole trojkta OST (rysunek) utworzonego przez o[ Ot, styczn i wektor wodzcy punktu styczno[ci jest staBe i rowna si 1. 3.6. Rozwiza podane rownania ro|niczkowe Bernoulliego: 3.7. Rozwiza podane zagadnienia pocztkowe dla równaD ró|niczkowych Bernoulliego oraz wyznaczy przedziaBy, na których s one okre[lone: Lista czwarta ________________________________________________________________________ _____________________________________________________4.1. Wyznaczy równania ró|niczkowe rodzin krzywych okre[lonych podanymi równaniami: 4.2. Znalez równania rodzin krzywych ortogonalnych do podanych rodzin krzywych: 4.3. Krzywa y = y(t) przechodzi przez pocztek ukBadu wspoBrzdnych i le|y w gornej poBpBaszczyznie. Ka|dy prostokt ograniczony osiami ukBadu wspoBrzdnych i prostymi poprowadzonymi z dowolnego punktu (t, y(t)) krzywej prostopadBymi do nich krzywa y(t) dzieli na dwie cz[ci. Pole zawarte pod krzyw y(t) jest dwa razy mniejsze ni| pole nad krzyw. Wyznaczy rownanie tej krzywej. Lista pita _____________________________________________________________________________________________________________________________ 5.1. Wyznaczy rozwizania podanych równaD rzdu drugiego: 5.2. Rozwiza (scaBkowa) podane równania ró|niczkowe: 5.3. Rozwiza podane równania ró|niczkowe z zadanymi warunkami pocztkowymi: 5.4. Znalez krzyw y = y(t), ktora przechodzi przez punkt (0, 1) i jest w nim styczna do prostej t + y = 1 oraz speBnia równanie ró|niczkowe yy' 'ƒàžà y2 Ÿà2=1. Lista szósta _____________________________________________________________________________________________________________________________ 6.1. Korzystajc z twierdzenia o istnieniu i jednoznaczno[ci dla równaD ró|niczkowych liniowych wyznaczy przedziaBy, na których podane zagadnienia pocztkowe maj jednoznaczne rozwizania: 6.2. Sprawdzi, |e funkcje f žàtŸà=e- t , È žàtŸà=e3t oraz ich dowolna kombinacja liniowa s rozwizaniami równania y2 2 - 2y2 - 3y = 0. 6.3. Dany jest ukBad fundamentalny (y1(t), y2(t)) równania liniowego jednorodnego postaci y2 2 +p(t)y2 +q(t)y =0. Dla jakich parametrów ±, ² " R, para funkcji (u1(t), u2(t)) okre[lonych wzorami u1(t) = ± y1(t) + y2(t) u2(t) = y1(t) + ² y2(t) jest równie| ukBadem fundamentalnym tego równania? 6.4. Sprawdzi, |e podane funkcje tworz na zadanych przedziaBach ukBady fundamentalne wskazanych równaD ró|niczkowych. Znalez rozwizania tych równaD z zadanymi warunkami pocztkowymi: 6.5. Wyznaczy równania ró|niczkowe liniowe jednorodne postaci y2 2 + p(t)y2 + q(t)y = 0, których ukBady fundamentalne skBadaj si z podanych funkcji: 6.6. Do ka|dego z podanych równaD ró|niczkowych wskazano jedno jego rozwizanie. Wykorzystujc metod obni|ania rzdu równania znalez rozwizania ogólne tych równaD ró|niczkowych: 6.7. Wyznaczy te warto[ci parametru m " R, dla których wskazana funkcja bdzie rozwizaniem podanego równania, a nastpnie scaBkowa te równania: Lista siódma _____________________________________________________________________________________________________________________________ 7.1. Napisa równania charakterystyczne podanych równaD ró|niczkowych i rozwiza je: 7.2. Wyznaczy równania ró|niczkowe liniowe jednorodne o staBych wspóBczynnikach postaci y2 2 +py2 +qy = 0, je|eli podane s pierwiastki ich wielomianów charakterystycznych: 7.3. Wyznaczy równania ró|niczkowe liniowe jednorodne o staBych wspóBczynnikach postaci y2 2 +py2 +qy = 0, je|eli podane funkcje wchodz w skBad ich ukBadów fundamentalnych: 7.4. Rozwiza podane równania ró|niczkowe liniowe o staBych wspóBczynnikach: 7.5. Znalez caBk ogóln równania: a) d) y' ' '-7 y' 'ƒà16 y'-12 y=0 yIVƒà8 y' 'ƒà16 y=0 b) e) y' ' '-6 y' 'ƒà12 y'-8 y=0 yIVƒà2 y' ''ƒà3 y''ƒà2 y'ƒà y=0 IV c) f) y ƒà2 y' '-8 y' ƒà5 y =0 yV ƒà yIVƒà y' ' 'ƒà2 y' ' ƒà2 y'ƒà y=0 7.6. Rozwiza podane zagadnienia pocztkowe: e) y' ' '- y'=0, y žà2Ÿà=1, y'žà2Ÿà= y' ' žà2Ÿà=0 f) yV ƒà6 yIV -3 y' ' '=0, yžà1Ÿà= y'žà1Ÿà= y' ' žà1Ÿà= y' ' ' žà1Ÿà= yIV žà1Ÿà=0 Lista ósma *8.1. Wyznaczy te warto[ci parametru ± " R, dla ktorych zagadnienie brzegowe y2 2 + ± y = 0, y(0) = y(2À), y2 (0) = y2 (2À) ma niezerowe rozwizanie. 8.2. Sprawdzi, |e podane funkcje s rozwizaniami wskazanych równaD ró|niczkowych liniowych niejedno- rodnych. Wyznaczy rozwizania ogólne tych równaD lub zagadnieD pocztkowych: *8.3. 1 Sprawdzi, |e funkcja f žàtŸà=2ƒà et žàsin tƒàcost Ÿà jest rozwizaniem równania ró|niczkowego: 5 lim y žàtŸà=2 Znalez rozwizanie, które speBnia warunek . t Œà -" 8.4. ZakBadajc, |e podane funkcje s rozwizaniami równania liniowego niejednorodnego y2 2 +p(t)y2 +q(t)y = h(t), wyznaczy rozwizanie ogólne tego równania lub rozwiza zagadnienie pocztkowe: 8.5. Podane funkcje s rozwizaniami wskazanych równaD liniowych niejednorodnych. Wyznaczy rozwizania ogólne tych równaD: Lista dziewita _____________________________________________________________________________________________________________________________ 9.1. Wyznaczy rozwizania ogólne podanych równaD liniowych niejednorodnych, je|eli znane s ukBady fundamentalne odpowiadajcy im równaD jednorodnych: 9.2. Korzystajc z metody uzmienniania staBych rozwiza podane równania ró|niczkowe: g) c) y' ' 'ƒà y'=sin t t3 y' ' '-3 t2 y' 'ƒà6 t y'-6 y=0 9.3. Korzystajc z metody przewidywania poda postacie rozwizaD podanych równaD ró|niczkowych: g) h) y' ' 'ƒà6 y' 'ƒà12 y'ƒà8 y=3 e-2 t y' ' '- y' 'ƒà4 y'-4 y=3e2t-4 sinžà 2t Ÿà IV i) j) y' ' '- y' '=-3 tƒà1 y - y=4 sin t-8 e-tƒà1 9.4. Korzystajc z twierdzenia o skBadaniu rozwizaD i metody metody przewidywania, rozwiza podane równania ró|niczkowe: 9.5. Rozwiza podane zagadnienia pocztkowe: Lista dziesita _____________________________________________________________________________________________________________________________ 10.1. Sprawdzi, |e dla podanych ukBadów równaD ró|niczkowych wskazane cigi funkcji s ich rozwizaniami na zadanych przedziaBach: 10.2. Rozwiza podane zagadnienia pocztkowe: 10.3. Podane ukBady równaD ró|niczkowych liniowych zapisa w postaci wektorowej: liniowych: 10.4. Korzystajc z twierdzenia o istnieniu i jednoznaczno[ci rozwizaD dla ukBadów równaD ró|niczkowych liniowych wyznaczy przedziaBy, na których podane zagadnienia pocztkowe maj jednoznaczne rozwizania: 10.5. Korzystajc z metody eliminacji rozwiza podane ukBady równaD ró|niczkowych liniowych ze wskazanymi warunkami pocztkowymi: 10.6. Sprawdzi, czy podane funkcje wektorowe tworz na zadanych przedziaBach ukBady fundamentalne wskazanych ukBadów równaD ró|niczkowych liniowych: wersja ODE_1 2011-09-17 W2/PWr,

Wyszukiwarka

Podobne podstrony:
lista 11
lista 11
lista 3 4 11
nxpHD CXDatabaseV1 00 1 11 2011 Lista zmian
Lista 1 11
Lista 1 11
wykład 11 układy równań liniowych
lista 2 11
Rownania Maxwella 11
LISTA 7 Zwyczajne równania różniczkowe I go rzędu
Lista płac 09 11
Matematyka III (Ćw) Lista 03 Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Z
Lista płac 08 11
Wykład 11 lista jednokierunkowa
Lista 11 całki funkcji trygonometrycznych
Lista 2012 11

więcej podobnych podstron