plik


ÿþZad.1 (x2 + y2)dl A(1,1) ; B(4,4) +" L 1 = a + b a = 1 ñø ñø òø4 = 4a + b Ò! òøb = 0 Ò! y = x óø óø y'= 1 4 4 126 2 (x2 + x2) 1+1dx = 2 2 x2dx = +" +" 3 1 1 Zad.2 +"(2x - y)dl A(2,2) ; B(- 2,4) L ñøa = - 1 2 = 2a + b ñø 1 ôø 2 Ò! y = - x + 3 òø4 = -2a + b Ò! òø 2 óø ôø óøb = 3 1 y'= - 2 2 2 2 2 1 1 5 5 5 5 ëø ëø öø ëø ëø ÷ø ÷ø ÷ø +"ìø2x + 2 x - 3öø 1+ ìø 2 ÷ø dx = 2 +"ìø 2 x - 3öødx = 2 ìø 4 x2 - 3xöø = -6 5 íø øø íø øø íø øø íø øø -2 -2 -2 Zad.3 +"(y)dl y2 = 4x O(0,0) ; P(1,2) L 2 ëø 1 öø 1 2 (y') = ìø- ÷ø = x x íø øø 1 1 2 2 1+ x = t 3 1+ x 4 4 2 tdx = t = ( 8 -1) +"2 x dx = +"2 1+ xdx = dx = dt = 2+" x 3 3 1 0 0 1 Zad.4 A(1,1) ; B(2,8) +"(y)dl y = x3 L 2 2 (y') = (3x2) = 9x4 1+ 9x4 = t2 2 145 145 1 1 1 2 x3 1+ 9x4 dx = = dt = t3 = ( 1453 - 103) 1 +" +"t 10 18 54 54 x3dx = tdt 1 10 18 Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 1 Zad.5 ëø öø x 1 +"ìø ÷ødl y = 1 d" x d" 2 ìø ÷ø y4 x íø øø L 2 öø 2 ëø -1 1 (y') = = ìø ÷ø x2 x4 íø øø x4 +1 = t2 2 2 17 17 x4 +1 1 1 1 2 x5 dx = x3 x4 +1dx = = dt = t3 = (17 17 - 2 2) 1 +" +" +"t 2 x4 2 6 6 x3dx = tdt 1 1 2 2 Zad.6 À +"2y cos(x)dl y = sin(x) 0 d" x d" 2 L 2 (y') = cos2(x) À 2 1 2 1 1+ cos2(x) = t 2 2 2 2 = -2 dt = - t3 = (2 2 -1) +"sin(x)cos(x) 1+ cos2(x)dx = +"t 2 cos(x)sin(x)dx = -tdt 3 3 0 2 Zad.7 9 y = x x 0 d" x d" 4 1+ xdl +" 4 L 2 3 9 2 ëø öø (y') = x = x ìø ÷ø 2 4 íø øø 4 4 4 ëø öøëø öø 9 9 9 9 ëø ëø öø ÷ø +"ìø 1+ 4 x ÷øìø 1+ 4 x ÷ødx = +"ìø1+ 4 xöødx = ìø x + 8 x2 ÷ø = 4 +18 = 22 ìø ÷øìø ÷ø íø øø íø øø 0 íø øøíø øø 0 0 Zad.8 +"(x + y)dl O(0,0) ; A(1,0) ; B(0,1) L ñøl : y = -x +1 0 d" x d" 1 1 ôø ôø y = t 0 d" t d" 1 òøl : x = 0 2 ôø ôøl3 : y = 0 x = t 0 d" t d" 1 óø 1 1 +"(x - y)dl = +"(x - x +1) 1+1dx = 2+"dx = 2 l1 0 0 1 1 +"(x - y)dl = +"t 0 +1dt = 2 l2 0 1 1 +"(x - y)dl = +"t 1+ 0dt = 2 l3 0 1 1 +"(x + y)dl = 2 + 2 + 2 = 1+ 2 L Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 2 Zad.9 1 1 À 2 +"6xy dl x = 3 cos(t) y = 3 sin(t) 0 d" t d" 4 L 2 2 îø- 1 1 (x') = sin(t)ùø = sin2(t) ïø úø 3 9 ðø ûø 2 1 1 2 îø (y') = cos(t)ùø = cos2(t) ïø3 úø 9 ðø ûø À À 2 5 4 4 2 2 2 sin(t) = u 1 1 2 2 2 2 2 2 6 cos(t)1 sin2(t) dt = = u2du = u3 2 = = +" +"cos(t)sin (t)dt = +" 0 3 9 9 27 cos(t)dt = du 27 81 648 162 0 0 0 Zad.11 xz 2 ; z +"1+ 2y dl x = t ; y = t2 = 3 t3 0 d" t d" 1 L 2 (x') = 1 2 (y') = 4t2 2 (z') = 4t4 1 1 1 2 t4 2 t4 2 2 2 4 (1+ +"1+ 1+ 4t2 + 4t4 dt = 3 +"1+ 2t2 2t2) dt = 3 +"t dt = 15 3 2t2 0 0 0 Zad.12 ; y ; z +"(xy)dl x = et = e-t = 2t 0 d" t d" 1 L 2 (x') = e2t 2 (y') = e-2t 2 (z') = 2 2 2 1 1 1 1 (e2t ) + 2e2t +1 (e2t +1) t e2t + 2 + e-2t dt = dt = dt = +"e Å" e-t Å" 2 + e2t + e-2t dt = +" +" +" 2 e2t (et ) 0 0 0 0 1 1 1 e2t +1 = dt = (et + e-t )dt = (et - e-t ) = (e -1- e-1 +1)= e - e-1 +" +" 0 et 0 0 Zad.13 3 x(y + z)dl x = cos(t) y = sin(t) 0 d" t d" 2À z = t +" 4 L 2 (x') = sin2(t) 2 (y') = cos2(t) 9 2 (z') = 16 Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 3 2À 2À öø sin(t) = u îø 3 ùøëø 9 5 3 ëø öø ëø = ÷ø ïø +"ðøcos(t)ìøsin(t)+ 4 t ÷øúøìø 1+ 16 ÷ødt = 4 +"ìøcos(t)sin(t)+ 4 t cos(t)öødt = cos(t)dt = du íø øø íø øø ûøìø ÷ø 0 íø øø 0 0 2À 2À p = t q'= cos(t) îø ùø 5 15 15 2À 15 2À = (t Å" sin(t)) - ïø úø +"(u)du + 16 +"t cos(t)dt = 0 +"sin(t)dt = 16 cos(t) = 0 0 4 16 0 0 ðø 0 ûø p'= 1 q = sin(t) Zad.14 +"(z)dl x = t cos(t) y = t sin(t) z = t 0 d" t d" 1 L 2 2 (x') = (cos(t)- t sin(t)) = cos2(t)- 2t cos(t)sin(t)+ t2 sin2(t) 2 2 (y') = (sin(t)+ t cos(t)) = sin2(t)+ 2t cos(t)sin(t)+ t2 cos2(t) 2 (z') = 1 1 1 3 t2 + 2 = u2 3 1 1 2 (3 +"t 1+ t2 +1dt = +"t t2 + 2dt = = udu = +"u du = 3 u3 = 3 3 - 2 2) 2 tdt 0 0 2 Zad.15 L = y = ln(x) 2 d" x d" 5 +"dl L 1 2 (y') = x2 1 5 2 u = (x2 +1) v'= ln(x) 5 5 5 ëø öø 1 x2 +1 dx ìø ÷ø L = 1+ dx = = - = +" +"ln(x) x2 +1dx = +" x 1 ìø ÷ø x2 x x2 +1 2 2 2 u'= v = íø øø 2 x x2 +1 5 ëø öø 26 5 26 5 26 5 2 + 5 ÷ø = - - ln(x + x2 +1) = - - ln(5 + 26)+ ln(2 + 5)= - + lnìø ìø ÷ø 5 2 2 5 2 5 2 5 + 26 íø øø Zad.16 3 L = x = 7 cos(t) y = 7sin(t) 0 d" t d" À +"dl 4 L 2 (x') = 49sin2(t) 2 (y') = 49cos2(t) 3À 3À 4 4 21À L = 49dt =7 = +" +"dt 4 0 0 Zad.17 r(³ )= 1+ cos³ 0 d" ³ d" À x = (1+ cos³ )cos³ ñø L : òø (1+ )sin³ óøy = cos³ Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 4 x'= -sin³ cos³ -(1+ cos³ )sin³ y'= -sin2 ³ + (1+ cos³ )cos³ 2 2 (x') = sin2 ³ cos2 ³ + 2sin2 ³ cos³ (1+ cos³ )+ (1+ cos³ ) sin2 ³ 2 2 (y') = sin4 ³ - 2(1+ cos³ )sin2 ³ cos³ + (1+ cos³ ) cos2 ³ r'(³ ) = - sin ³ 2 2 2 (x') + (y') = [r'(³ )] +[r2(³ )] 2 2 2 (x') + (y') = sin2 ³ +(1+ cos2 ³ ) = sin2 ³ +1+ 2cos³ + cos2 ³ = 2(1+ cos³ ) À À À À ³ ³ ³ ëø öød³ L = f (x, y)dl = 2(1+ cos³ )d³ = 2 2cos2ëø öød³ = 2 ìø ÷ø +" +" +" +"cosìø 2 ÷ø = 4sin = 4 2 2 íø øø íø øø 0 L 0 0 0 Zad.18 1 öø r(³ )= 3sin3ëø ³ ìø ÷ø 3 íø øø ñø 1 öøcos (³ ) ìø ôøx = 3sin3ëø ³ ÷ø 3 ôø íø øø L : òø ôøy = 3sin3ëø 1 ³ öøsin (³ ) ìø ÷ø ôø 3 íø øø óø 1 1 1 öø öø öø x'= 3sin2ëø ³ cosëø ³ cos(³ )- 3sin3ëø ³ sin(³ ) ìø ÷ø ìø ÷ø ìø ÷ø 3 3 3 íø øø íø øø íø øø 1 1 1 öøcosëø öø öøcos y'= 3sin2ëø ³ ³ sin(³ )+ 3sin3ëø ³ (³ ) ìø ÷ø ìø ÷ø ìø ÷ø 3 3 3 íø øø íø øø íø øø x'2 + y'2 = r'2 (³ )+ r2(³ ) 1 1 ëø öøcosëø öø 2 r'(³ ) = 3sin ³ ³ ìø ÷ø ìø ÷ø 3 3 íø øø íø øø 2 2 îø 1 1 ùø îø 1 ùø 1 îø 1 1 ùø ëø öøcosëø öø ëø öø öø öø ëø öø 2 3 x'2 + y'2 = ìø ìø ïø3sin ìø 3³ ÷ø ìø 3³ ÷øúø + ïø3sin ìø 3³ ÷øúø = 9sin4ëø ³ ÷øïøcos2ëø ³ ÷ø + sin2 ìø 3³ ÷øúø = 3 3 íø øø íø øø íø øø íø øø íø øø íø øø ðø ûø ðø ûø ðø ûø 1 1 öø öø = 9sin4 ëø ³ = 3sin2 ëø ³ ìø ÷ø ìø ÷ø 3 3 íø øø íø øø 1 3À À " 1 9 ëø öød³ ³ = ± = 9 2 = À 2 L = f (x, y)dl =3 +" +"sin ìø 3³ ÷ø 3 +"sin (±)d± 2 íø øø L 0 0 d³ = 3± À À À u = sin(±) v'= sin(±) À 2 2 ") (±)d± = = [- sin(±)cos(±)] + (±)d± = +"sin +"sin(±)sin(±)d± = 0 +"cos 0 0 0 u'= cos(±) v = -cos(±) À À À À 2 2 = 0 + (1- sin2(±))d± = À - (±)d± Ò! (±)d± = +" +"sin +"sin 2 0 0 0 Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 5 Zad.19 x2 + y2 Aëø1 , 2öø Bëø-11 , 11öø Á(x, y)= ìø ÷ø ìø ÷ø 30 íø øø íø øø 3 ñø 2 = a + b ñø 3 11 ôøa = - òø11 = -11a + b Ò! ôø 4 Ò! y = - x + òø 4 4 óø ôøb = 11 ôø óø 4 2 öø 2 ëø- 3 9 (y') = = ìø ÷ø 4 16 íø øø 2 1 1 ëø öø 1 11 3 9 1 25 33 121 ëø ëø öødx = ìø M = y)dl = x2 + - xöø ÷ø 1+ dx = x2 ìø ÷ø ìø - x + ÷ø +"Á(x, 30 +" +" ìø ÷ø 4 4 16 24 16 8 16 íø øø íø øø L -11 -11 íø øø 1 25 33 121 33300 3960 +1452 33300 +16236 49536 ëø = x3 - x2 + xöø = + = = = 43 ìø ÷ø 1152 384 1152 1152 íø1152 384 384 øø -11 Zad.20 y = x 0 d" x d" 2 Á(x, y)= x x 2 öø 2 ëø- 1 1 (y') = = ìø ÷ø x2 x4 íø øø 2 2 2 1 x x 1+ x4 M = y)dl = x x Å" 1+ dx = Å" 1+ x4 dx = dx = +"Á(x, +" +" +" x4 x2 x L 0 0 0 Zad.21 y = e-2 x 0 d" x d" 1 Á(x, y)= y2 2 2 (y') = (- 2e-2x) = 4e-4 x 1+ 4e-4 x = t 1 1+4e-4 1 -4x M = y)dl = 1+ 4e-4x dx = = - tdt = 1 +"Á(x, +"e +" 16 e-4 xdx = - dt L 0 5 16 1 3 îø ùø = 53 - (1+ 4e-4) ïø úø 24 ðø ûø Zad.22 x = 4cos(2t) ñø t ôø Á (x, y,) = 1 + òøy = 4sin(2t) 0 d" t d" 2À 2À ôøz = 3t óø 2 2 2 ñø (x') = (- 8 cos(2t)sin(2t)) = 64 cos2(2t)sin (2t) ôø ôø 2 2 2 (y') = (8 cos(2t)sin(2t)) = 64 cos2(2t)sin (2t) òø ôø 2 (z') = 9 ôø óø 2À ëø öø t M = y, z)dl = +"Á(x, +"ìø1+ 2À ÷ø 9 +128cos2(2t)sin2(2t)dt = ìø ÷ø L 0 íø øø Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 6 Zad.23 y = x2 0 d" x d" 1 2 2 (y') = (2x) = 4x2 2 1+ 4x2 = t 1 5 1 53 -1 MY = xÁ(x, y)dl =Á0 xdl = Á0 x 1+ 4x2 dx = = Á0 2dt = Á0 1 +" +" +" +"t 4 12 xdx = tdt L L 0 1 4 Zad.24 x = t - sin(t) y = 1- cos(t) 0 d" t d" 2À 2 2 ñø (x') = (1- cos(t)) =1- 2cos(t)+ cos2(t) ôø òø 2 ôø (y') = sin2(t) óø 2À 2À 2À M = y)dl =Á0 1- 2cos(t)+ cos2(t)+ sin2(t)dt = Á0 2(1- cos(t))dt = 2Á0 1- cos(t)dt +"Á(x, +" +" +" L 0 0 0 MY 1 2Á0 2À xC = = xÁ(x, y)dl = +" +"(t - sin(t)) 1- cos(t)dt M M M L 0 M 1 2Á0 2À X yC = = yÁ(x, y)dl = +" +"(1- cos(t)) 1- cos(t)dt M M M L 0 Zad.25 x = cos(t) ñø ôø À òøy = sin(t) 0 d" t d" 2 ôøz = t óø 2 ñø (x') = sin2(t) ôø ôø 2 (y') = cos2(t) òø ôø 2 (z') =1 ôø óø À À 2 2 2À M = Á(x, y, z)dl =Á0 sin2(t)+ cos2(t)+1dt = Á0 2dt = Á0 +" +" +" 2 L 0 0 À 2 MYZ 1 2 - 2 - 2 xC = = xÁ(x, y, z)dl = Á0 +" +"cos(t)dt = M Á0 = À M M M L 0 À 2 MYZ 1 2 2 2 yC = = xÁ(x, y, z)dl = Á0 +" +"sin(t)dt = M Á0 = À M M M L 0 À 2 2 2 M 1 2 À Á0 À Á0 2 À 2 XY zC = = zÁ(x, y, z)dl = Á0 = = Å" = +" +"(t)dt M M M 8M 8 8 2ÀÁ0 L 0 ëø öø - 2 2 À 2 ÷ø Cìø , , ìø ÷ø À À 8 íø øø Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 7 Zad.26 y = ex 0 d" x d" 1 1 I = y, z)y2dl = Á0 2 x 1+ ex dx = X +"Á(x, +"e L 0 Zad.27 x = cos³ z = 0 ñø ñø òø òø óøy = sin³ óøz = 2 + x 2 (x') = sin2 ³ 2 (y') = cos2 ³ x'2 + y'2 = (cos2 ³ + sin2 ³ = 1 2À " = + cos³ )d³ = 4À + 0 = 4À +"(2 0 Zad.28 z = 0 x = 2cos³ ñø ñø òø òø óøy = 2sin³ óøz = 1+ x2 + y2 2 (x') = 4sin2 ³ 2 (y') = 4cos2 ³ x'2 + y'2 = 4(cos2 ³ + sin2 ³ = 2 2À 2À " = 4)2d³ = = 20À +"(1+ +"10d³ 0 0 Grzegorz MrzygBocki, WILiZ, sem. III, gr.2 8

Wyszukiwarka

Podobne podstrony:
calka krzywoliniowa
Całka krzywoliniowa, nieskierowana R2
Całka krzywoliniowa, nieskierowana R3
Microsoft Word W21 Calka krzywoliniowa
Całka krzywoliniowa, skierowana w R2
Calka krzywoliniowa skalarna
C 10 Całka krzywoliniowa
2009 02 17 test egzaminacyjny nr 3 Pomorski ZPN odpowiedzi B
02 odpowiedzi woj G j niemiecki 12

więcej podobnych podstron