Matematyka istnieje od czasów gdy ludzi zaczęli porównywać wielkości, zaczęli mierzyć, liczyć oraz wyciągać wnioski. W starożytnym Egipcie i Babilonii rozwinęły się rachunki, dzięki czemu powstała arytmetyka i algebra. Babilończycy używali do liczenia systemu sześćdziesiątkowego. Matematyka osiągnęła w Egipcie poziom umożliwiający wznoszenie wspomnianych imponujących budowli; musiała obejmować pewną znajomość geometrii algebry. Poważny rozwój matematyki rozpoczął się w starożytnej Grecji od pracy Talesa z Miletu. Cechą matematyki greckiej jest ujęcie geometrii. Jej jednym z największych osiągnięć są Elementy Euklidesa czy prace Archimedesa, gdzie już tkwiło w sposób utajniony pojęcie granicy, które jest podstawową dla całej analizy matematycznej, a także prace Diofantosa, gdzie spotkać można ideę liczb ujemnych. Matematyka w Grecji przekształciła się na naukę dedukcyjną.
W średniowieczu matematyką głównie zajmowali się uczeni arabscy, rozpowszechniając po Europie pozycyjny system liczenia, który został utworzony przez Indusów, rozwijali również algebrę, której początek wiąże się z pracami arabskiego matematyka Al-Chuwarizmiego -IX wiek. W XVI wieku we Włoszech rozpoczął się renesans matematyki, wówczas to Taraglia, Sardano oraz Ferrari zaprezentowali metody jakie należy stosować przy rozwiązywaniu równań algebraicznych trzeciego i czwartego stopnia. Natomiast XVII wiek jest początkiem matematyki nowożytnej. Powstał wówczas rachunek całkowy i różniczkowy, geometria analityczna, geometria różniczkowa oraz rachunek prawdopodobieństwa.
W XVIII wieku wysunęła się na początek mechanika teoretyczna, dając początek teorii równań różniczkowych. Nadal rozwijał się rachunek wariacyjny oraz geometria różniczkowa. Cauchy, Gauss Weierstrass w XIX w. stworzyli podstawę do teorii funkcji analitycznych, zaś Bolyai oraz Lobaczewski odkryli geometrię nieeuklidesową. Nastąpił także szybki w tym czasie rozwój algebry. Abel i Galois rozstrzygnęli problemy podstawowe teorii równań algebraicznych. Nastąpił również rozwój teorii funkcji rzeczywistych (Weierstrass) oraz arytmetyki teoretycznej (L. Kronecker, J. Dedekind).