|
|
|
|
Temat : CZWÓRNIK |
|
1 WSTĘP.
Czwórnikiem nazywa się część obwodu elektrycznego mającego dwie pary zacisków . Spełnia on rolę pośredniego ogniwa przy przesyłaniu energii elektrycznej między źródłem a odbiornikiem .
Czwórniki mogą być klasyfikowane ze względu na cechę liniowości elementów wchodzących w ich skład, również ze względu na schematy połączeń wewnętrznych np. czwórniki typu T,X,Π. Czwórnik nazywa się pasywnym, jeżeli dla dowolnej chwili t energia pobierana przez czwórnik z układu zewnętrznego jest nieujemna.
Celem ćwiczenia jest wyznaczenie parametrów czwórnika, które pozwalają analitycznie powiązać i zanalizować napięcia i prądy na jego zaciskach.
Schemat czwórnika :
I1 I2
1 2
U1 U2
1' 2'
2 POMIARY I OBLICZENIA.
a. Wyznaczenie impedancji wejściowej rozwarciowej Zlj i zwarciowej Zlz.
A W
I1 1 2
U1 V Ic
1' 2'
U[V] |
I[mA] |
P[W] |
|||
TAK NIE |
KONDENSATOR TAK NIE |
KONDENSATOR TAK NIE |
|||
24 |
20 |
340 |
540 |
1.5 |
7.45 |
23 |
19 |
320 |
510 |
1.35 |
6.55 |
22 |
18 |
310 |
480 |
1.25 |
6.05 |
Moc czynna wejściowa czwórnika w stanie jałowym na wyjściu wynosi :
Pj = Re {U1I1 I2=0} = U1⋅I1⋅ cosϕljI2=0
kąt :
moduł impedancji :
wyznaczenie impedancji wejściowej rozwarciowej :
Zlj = 24/0.34=70.58 Ω
ϕlj = -arccos(0.018)=-1°23'
Zlj =70.58 e -j1°23'
wyznaczenie impedancji wejściowej zwarciowej :
Zlz = 20/0.54=37.03 Ω
ϕlz = -arccos(0.69)=0°48'
Zlz = 37.03 e -j0°48'
Wyznaczenie parametru C czwórnika .
V |
mA |
W |
10 11 12 |
180 200 220 |
1.05 1.3 1.55 |
I1
A W 1 2
E V U2
1' 2'
ΔU
Watomierz wskaże wartość:
W1 = Re {U2I1 I2=0} = U2⋅I1⋅ cosγI2=0
kąt :
γ=±arc cos (W/U2∗I 1 )= 57O58'
moduł parametru C :
C=I1 /U2I2=O=O.O16
czyli : C =0.016 e j57°58'
Wyznaczenie parametru B czwórnika.
A W
1 2
E V U1 I2
1' 2'
V |
A |
W |
9 8 7 |
160 140 120 |
1,4 1,1 0,85 |
Watomierz wskaże wartość :
W2 = Re {U1I2 u2=0} = U1⋅I2⋅ cosβu2=0
kąt :
β=± arc cos (W3 /U2 ∗I3)= 29 °85'
moduł parametru B :
B=U1/I2U2=0 =64.28
czyli : B =64.28 e j29°85'
Wyznaczenie parametrów A i D.
Zlj=A/C ⇒ A=Zlj∗C= 1.13 ej56'35
Zlz=B/D ⇒ D=B/Zlz= 1.74 ej30'33
Sprawdzenie symetryczności i pasywności czwórnika.
Czy A=D ? 1.13 e j56°35' =1.74 e j30°33 A ≠ D
Czy AD - BC = 1 ?
1.13 e j56°35 ⋅ 1.74e j30.33° - 64.28 e j29°85' ⋅ 0.016 e j57°58 = 1
L = 0.1 + j1.95 - 0.05 - j1.03 = 0.92e j86'53
L ≅ P
3 WNIOSKI.
Otrzymany wynik dla warunku pasywności odbiega nieco od jedynki. Przyczyną mogą być : niedokładność urządzeń pomiarowych, jak również błąd odczytu skali. Wynik ten jednak pozwala stwierdzić, iż badany czwórnik jest odwracalnym. Ponadto stwierdzamy, że badany czwórnik jest symetryczny.
Z przeprowadzonych pomiarów otrzymaliśmy następujące parametry czwórnika :
A = 1.13 e j56°35' B = 64.28 e j29°85' C = 0.016 e j57°58' D = 1.74 e j30°33'