Chapt 01 Lect03

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

13

Types of Finite Elements

1-D (Line) Element

(Spring, truss, beam, pipe, etc.)

2-D (Plane) Element

(Membrane, plate, shell, etc.)

3-D (Solid) Element






(3-D fields - temperature, displacement, stress, flow velocity)

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

14

III. Spring Element

Everything important is simple

.

One Spring Element

Two nodes:

i, j

Nodal displacements:

u

i

, u

j

(in, m, mm)

Nodal forces:

f

i

, f

j

(lb, Newton)

Spring constant (stiffness):

k (lb/in, N/m, N/mm)

Spring force-displacement relationship:

F

k

= ∆

with

∆ =

u

u

j

i

k

F

=

/

(> 0) is the force needed to produce a unit stretch.

k

i

j

u

j

u

i

f

i

f

j

x

F

Nonlinear

Linear

k

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

15

We only consider linear problems in this introductory

course.

Consider the equilibrium of forces for the spring. At node i,

we have

f

F

k u

u

ku

ku

i

j

i

i

j

= −

= −

=

(

)

and at node j,

f

F

k u

u

ku

ku

j

j

i

i

j

= =

= −

+

(

)

In matrix form,

k

k

k

k

u

u

f

f

i

j

i

j







=

or,

ku

f

=

where

k = (element) stiffness matrix

u = (element nodal) displacement vector

f = (element nodal) force vector

Note that k is symmetric. Is k singular or nonsingular? That is,
can we solve the equation? If not, why?

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

16

Spring System

For element 1,

k

k

k

k

u

u

f

f

1

1

1

1

1

2

1

1

2

1







=

element 2,

k

k

k

k

u

u

f

f

2

2

2

2

2

3

1

2

2

2







=

where

f

i

m

is the (internal) force acting on local node i of element

m (i = 1, 2).

Assemble the stiffness matrix for the whole system:

Consider the equilibrium of forces at node 1,

F

f

1

1

1

=

at node 2,

F

f

f

2

2

1

1

2

=

+

and node 3,

F

f

3

2

2

=

k

1

u

1,

F

1

x

k

2

u

2,

F

2

u

3,

F

3

1

2

3

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

17

That is,

F

k u

k u

F

k u

k

k u

k u

F

k u

k u

1

1 1

1

2

2

1 1

1

2

2

2

3

3

2

2

2

3

=

= −

+

+

= −

+

(

)

In matrix form,

k

k

k

k

k

k

k

k

u

u

u

F

F

F

1

1

1

1

2

2

2

2

1

2

3

1

2

3

0

0

+







=







or

KU

F

=

K is the stiffness matrix (structure matrix) for the spring system.

An alternative way of assembling the whole stiffness matrix:

“Enlarging” the stiffness matrices for elements 1 and 2, we

have

k

k

k

k

u

u

u

f

f

1

1

1

1

1

2

3

1

1

2

1

0

0

0

0

0

0







=



0

0

0

0

0

0

2

2

2

2

1

2

3

1

2

2

2

k

k

k

k

u

u

u

f

f







=







background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

18

Adding the two matrix equations (superposition), we have

k

k

k

k

k

k

k

k

u

u

u

f

f

f

f

1

1

1

1

2

2

2

2

1

2

3

1

1

2

1

1

2

2

2

0

0

+







=

+



This is the same equation we derived by using the force
equilibrium concept.

Boundary and load conditions:

Assuming,

u

F

F

P

1

2

3

0

=

=

=

and

we have

k

k

k

k

k

k

k

k

u

u

F

P

P

1

1

1

1

2

2

2

2

2

3

1

0

0

0

+







=







which reduces to

k

k

k

k

k

u

u

P

P

1

2

2

2

2

2

3

+







= 

and

F

k u

1

1

2

= −

Unknowns are

U

= 

u

u

2

3

and the reaction force

F

1

(if desired).

background image

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

© 1998 Yijun Liu, University of Cincinnati

19

Solving the equations, we obtain the displacements

u

u

P k

P k

P k

2

3

1

1

2

2

2

=

+

/

/

/

and the reaction force

F

P

1

2

= −

Checking the Results

Deformed shape of the structure

Balance of the external forces

Order of magnitudes of the numbers

Notes About the Spring Elements

Suitable for stiffness analysis

Not suitable for stress analysis of the spring itself

Can have spring elements with stiffness in the lateral
direction, spring elements for torsion, etc.


Wyszukiwarka

Podobne podstrony:
Chapt 06 Lect03
Chapt 01 Lect01
Chapt 03 Lect03
Chapt 02 Lect03
Chapt 01 Lect02
Chapt 04 Lect03
Chapt 01 Lect04
Chapt 07 Lect03
Chapt 01
TD 01
Ubytki,niepr,poch poł(16 01 2008)
01 E CELE PODSTAWYid 3061 ppt
01 Podstawy i technika
01 Pomoc i wsparcie rodziny patologicznej polski system pomocy ofiarom przemocy w rodzinieid 2637 p
zapotrzebowanie ustroju na skladniki odzywcze 12 01 2009 kurs dla pielegniarek (2)
01 Badania neurologicz 1id 2599 ppt
01 AiPP Wstep

więcej podobnych podstron