Klasyfikacje PDF

background image

Rock Mass Classifications

Marek Cała

Wydział Górnictwa i Geoinżynierii

Katedra Geomechaniki, Budownictwa i Geotechniki

background image

Rock Mass Classification

Why?

How does this help

us in tunnel design?

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Interaction

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Summary of rock mass characteristics, testing

methods and theoretical considerations

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Triaxial testing

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

piaskowiec wapień iłowiec

c [Pa] 1,6977E+07

F [

0

]

37,68

c [Pa]

2,7020E+07

F [

0

]

34,48

c [Pa]

2,1791E+07

F [

0

]

33,58

Sandstone Limestone Mudstone

background image

Triaxial testing

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

0

10

20

30

40

50

60

70

80

90

100

Naprężenie średnie, MPa

0

10

20

30

40

50

60

N

a

o

że

n

ie

d

e

w

ia

to

ro

w

e

.

M

P

a

kohezja 4,09 MPa
kąt tarcia 36,84

o

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Types of failure which occur in rock masses

under low and high in-situ stress levels

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Types of failure which occur in rock masses

under low and high in-situ stress levels

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków


Terrina

background image
background image

Engineering Rock Mass Classification

Schemes

• Developed for estimation of tunnel support
• Used at project feasibility and preliminary design

stages

• Simple check lists or detailed schemes
• Used to develop a picture of the rock mass and its
variability
• Used to provide initial empirical estimates of tunnel
support requirements
• Are practical engineering tools which force the user to
examine the properties of the rock mass
• Do Not replace detailed design methods
• Project specific

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Terzaghi’s Rock Mass Classification

(1946)

• Rock Mass Descriptions

– Intact
– Stratified
– Moderately jointed
– Blocky and Seamy
– Crushed
– Squeezing
– Swelling

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Intact rock contains neither joints nor hair cracks. Hence, if it

breaks, it breaks across sound rock. On account of the injury

to the rock due to blasting, spalls may drop off the roof

several hours or days after blasting. This is known as a

spalling condition. Hard, intact rock may also be encountered

in the popping condition involving the spontaneous and

violent detachment of rock slabs from the sides or roof.

Stratified rock consists of individual strata with little or no

resistance against separation along the boundaries between

the strata. The strata may or may not be weakened by

transverse joints. In such rock the spalling condition is quite

common.

Moderately jointed rock contains joints and hair cracks, but

the blocks between joints are locally grown together or so

intimately interlocked that vertical walls do not require

lateral support. In rocks of this type, both spalling and

popping conditions may be encountered.

Terzaghi’s Rock Mass Classification

(1946)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Blocky and seamy rock consists of chemically intact or almost

intact rock fragments which are entirely separated from each

other and imperfectly interlocked. In such rock, vertical walls

may require lateral support.

Crushed but chemically intact rock has the character of crusher

run. If most or all of the fragments are as small as fine sand

grains and no recementation has taken place, crushed rock below

the water table exhibits the properties of a water-bearing sand.

Squeezing rock slowly advances into the tunnel without

perceptible volume increase. A prerequisite for squeeze is a high

percentage of microscopic and sub-microscopic particles of

micaceous minerals or clay minerals with a low swelling capacity.

Swelling rock advances into the tunnel chiefly on account of

expansion. The capacity to swell seems to be limited to those

rocks that contain clay minerals such as montmorillonite, with a

high swelling capacity.

Terzaghi’s Rock Mass Classification (1946)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Quality Designation Index (RQD)

(Deere et al. 1967)

• Aim : to provide a quantitative estimate of rock mass
quality from drill logs
• Equal to the percentage of intact core pieces longer

than 100mm in the total length of core

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

RQD

• Directionally dependant parameter
• Intended to indicate rock mass quality in-situ
• Adapted for surface exposures as ‘J

v

’ number of

discontinuities per unit volume
• Used as a component in the RMR and Q systems
• Palmstrom (1982)
• Priesta i Hudsona (1976)
l - number of joints per unit length

v

J

RQD

3

.

3

115

1

.

0

1

.

0

1

100

e

RQD

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Procedure for Measurement and

Calculation of RQD

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Weathering of Basalt with depth

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Multi parameter Rock Mass Classification

Schemes

• Rock Mass Structure Rating (RSR)
• Rock Mass Rating (RMR)
• Rock Tunnelling Quality Index (Q)
• Geological Strength Index (GSI)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Structure Rating (RSR) (1972)

• Introduced the concept of rating components to arrive at
a numerical value
• Demonstrates the logic in a quasi-quantitative rock mass
classification
• Has limitations as based on small tunnels supported by
steel sets only
• RSR = A + B + C

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Structure Rating

Parameter A: General area geology

Considers

(a) rock type origin

(b) rock ‘hardness’

(c) geotechnical structure

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Considers

(a) joint spacing

(b) joint orientation (strike and dip)

(c) direction of tunnel drive

Rock Structure Rating

Parameter B: Geometry : Effect of

discontinuity set

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Considers

(a) overall rock mass quality (on the basis of A + B)

(b) joint condition

(c) water inflow

Rock Structure Rating

Parameter C: Groundwater, joint condition

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

RSR support estimates for a 7.3m diameter

circular tunnel

(After Wickham et al. 1972)

Examples

RSR = 62

2” shotcrete

1” rockbolts @

5ft centres

RSR = 30

5” shotcrete

1” rockbolts @

2.5ft centres

OR 8WF31 steel

sets @ 3ft centres

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Geomechanics Classification or

Rock Mass Rating System (RMR)

(Bieniawski 1976)

Based upon

• uniaxial compressive strength of rock material
• rock quality designation (RQD)
• spacing of discontinuities
• condition of discontinuities
• groundwater conditions
• orientation of discontinuities

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

• Rock mass divided into structural regions
• Each region is classified separately
• Boundaries can be rock type or structural, eg: fault
• Can be subdivided based on significant changes, eg:
discontinuity spacing

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Bieniawski, 1976 to 1989

• System refined by greater data
• Ratings for parameters changed
• Adapted by other workers for different situations
• PROJECT SPECIFIC SYSTEMS

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image
background image
background image

Rating

Class

Description

81-100

I

Very Good Rock

61-80

II

Good Rock

41-60

III

Fair Rock

21-40

IV

Poor Rock

Less than 20

V

Very Poor Rock

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Guidelines for excavation and support of 10m

span rock tunnels in accordance with the RMR

system

(After Bieniawski 1989)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Prediction of in-situ deformation modulus E

m

from rock mass classifications

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

• Nicholson & Bieniawski (1990)

• Bieniawski (1978) and Serafim & Pereira (1983)

• Hoek i Brown (1997)

•Read et al. (1999)

)

82

.

22

/

(

2

9

.

0

0028

.

0

RMR

s

rm

e

RMR

E

E

)

(

50

100

2

GPa

RMR

for

RMR

E

m

)

(

50

10

40

/

)

10

(

GPa

RMR

for

E

RMR

m

40

/

)

10

(

10

10

RMR

c

m

R

E

3

10

1

.

0

RMR

E

mass

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Prediction of in-situ deformation modulus

E

m

from rock mass classifications

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Support pressure - Unal (1983)

s - tunnel width

s

RMR

p

v

100

100

Hoek (1994):

m m e

i

RMR

100

28

s e

RMR

100

9

m

i

- constant – from 4 (weak shales) to 32 (granite).

R

sR

crm

c

R

R

m

m

s

rrm

c

2

4

2

Aydan & Kawamoto (2000)

5

.

2

0016

.

0

RMR

R

crm

Kalamaras & Bieniawski (1995)

85

15

2

RMR

R

R

c

crm

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Trueman (1988):

RMR

cmass

e

06

.

0

5

.

0

Yudhbir (1983):

RMR

RMR

ci

cmass

e

100

65

.

7

Sheorey (1997):

20

100

RMR

ci

cmass

e

Rock Mass Rating System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Rating System

Aydan & Kawamoto (2000)

RMR

RMR

RMR

R

R

c

crm

100

6

Let’s assume:

60

RMR

MPa

R

c

80

Hoek:

Aydan:

Kalamaras & Bieniawski:

MPa

R

c

67

.

8

MPa

R

c

62

.

44

MPa

R

c

18

.

21

Aydan & Kawamoto (2000)

RMR

rm

05

.

0

22

rm

rm

crm

rm

R

c

cos

sin

1

2

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Tunnelling Quality Index Q – Barton,

Lien, Lunde

• Based on case histories in Scandinavia
• Numerical values on a log scale
• Range 0.001 to 1000

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

‘Q’ Classification System

(After Barton et al. 1974)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

• represents the structure of the rockmass

• crude measure of block or particle size

(After Barton et al. 1974)

‘Q’ Classification System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

• represents roughness and frictional

characteristics of joint walls or infill material

(After Barton et al. 1974)

‘Q’ Classification System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

• consists of two stress parameters

• SRF can be regarded as a total stress parameter

measure of

– loosening load as excavated through shear zones

– rock stress in competent rock

– squeezing loads in plastic incompetent rock

• J

W

is a measure of water pressure

(After Barton et al. 1974)

‘Q’ Classification System

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Classification of individual parameters

used in

the Tunnelling Quality Index Q

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image
background image
background image

Classification of individual parameters used

in

the Tunnelling Quality Index Q (cont’d)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image
background image
background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

JRC=Joint Roughness Coefficient

background image

Classification of individual parameters used in

the Tunnelling Quality Index Q

(cont’d)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

‘Q’ Classification System – SRF update

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q Classification Scheme

Resolves to three parameters

Block size

( RQD / J

n

)

Interblock shear strength ( J

r

/ J

a

)

Active stress

( J

w

/ SRF )

Does NOT include joint orientation

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Equivalent Dimension D

e

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Estimated support categories based on the

tunnelling quality index Q

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q Classification Scheme

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q - rock mass properties

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q - rock mass properties

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q - rock mass properties

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Q Classification Scheme

Roof pressure:

3

1



Q

J

J

p

r

n

roof

Length of the bolts:

(roof)

(walls)

ESR

s

L

15

.

0

2

3

1

3

2

.

0



Q

J

J

p

r

n

roof

Bhasin & Grimstad (1996):

3

1

40





Q

J

s

p

r

roof

Young’s modulus:

Seismic wave velocity:

]

/

[

100

log

5

.

3

s

km

R

Q

V

c

p

L

H

ESR

2 0 15

.

GPa

R

Q

E

c

3

3

3

10

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

RMR – Q - Correlations

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

RMR – Q -Correlations

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Classification System

• RMR and Q system or variants are the most widely

used

• both incorporate geological, geometric and
design/engineering parameters to obtain a “value” of
rock mass quality
• empirical and require subjective assessment

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Rock Mass Classification System

Approach:

• accurately characterise the rockmass ie: full and
complete description of the rockmass
• assign parameters for classification later
• always use two systems for comparison

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Geological Strength Index (GSI)

• Method to link the constants m and s of Hoek-Brown
failure criterion to observations in the field
ie: a possible solution to the problem of estimating
strength of jointed rock mass
• A system for estimating the reduction in rock mass
strength for different geological conditions
• Overcomes deficiencies of RMR for poor quality rock

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Estimate of Geological Strength

Index GSI

based on geological

descriptions

Estimation of constants based upon

rock

mass structure and discontinuity

surface conditions

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image
background image
background image

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Geological Strength Index (GSI)

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Geological Strength

Index (GSI)

Estimate of Geological

Strength Index GSI

based on geological

descriptions.

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Plots of cohesive strength and friction angles

for different GSI and m

i

values

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków

background image

Klasyfikacja KF

Marek Cała, Katedra Geomechaniki, Budownictwa i Geotechniki, WGiG AGH, Kraków


Wyszukiwarka

Podobne podstrony:
Klasyfikacja węgla, A.PDF
Formalno prawne aspekty dzialalnoości geologiczno górniczej klasyfikacja zasobów
Podmiotowa klasyfikacja zjawisk finansowych
Podstawy rachunkowości Klasyfikacja kont 2
Sygnały klasyfikacja
klasyfikacja i etiopatogeneza zaburzen seksualnych
2 Urazy zębów u pacjentów dorosłych klasyfikacje (2)id 19701 ppt
INSTR KLASYF DLUZNE
14 TIOB W14 zelbet i klasyfikacja deskowan
instr 2011 pdf, Roztw Spektrofoto
Klasyfikacja bakterii i mechanizmy patogenezy bakteryjnej
(ebook PDF)Shannon A Mathematical Theory Of Communication RXK2WIS2ZEJTDZ75G7VI3OC6ZO2P57GO3E27QNQ
KSIĄŻKA OBIEKTU pdf

więcej podobnych podstron