Funkcje Cyklometryczne
1. Wyznaczy¢ dziedzin¦ funkcji:
(a) f (x) = arcsin (4x − 2),
(b) f (x) = arccos (2
2x+4
− 3)
,
(d) f (x) =
√
4 arcsin 3x − π
,
(c) f (x) = log
3
2 arccos (1 − 2x) −
π
2
,
(e) f (x) = arcsin (arctg x),
(f) f (x) = p3arcctg (1 − 2x) − 2π.
2. Naszkicowa¢ wykres funkcji:
(a) f (x) = 3 arcsin (|x| − 2),
(b) f (x) = arccos
x
2
− 1
−
π
2
,
(d) f (x) = arctg (|x − 1|) + π,
(c) f (x) = 2arcctg (x + 2) − π,
(e) f (x) =
arccos (x + 1) −
π
4
,
(f) f (x) = 3 arccos (3x − 6) − π.
(g) f (x) = arcsin (sin x),
(h) f (x) = sin (arcsin x),
(i) f (x) = arccos (cos x),
(j) f (x) = cos (arccos x),
(k) f (x) = arctg (tgx),
(l) f (x) = tg (arctgx)
(ª) f (x) = arcctg (ctgx),
(m) f (x) = ctg (arcctgx).
3. Wykaza¢ to»samo±ci:
(a) ∀x ∈ [−1, 1]
arcsin (−x) = − arcsin x
,
(b) ∀x ∈ [−1, 1]
arcsin x + arccos x =
π
2
,
(c) ∀x ∈ [−1, 1]
arccos (−x) = π − arccos x
,
(d) ∀x ∈ [−1, 1]
arcsin x =
arctg
x
√
1−x
2
,
(e) ∀x ∈ [−1, 1]
arccos x =
arcctg
x
√
1−x
2
,
(f) ∀x ∈ R
arctg (−x) = −arctgx,
(g) ∀x ∈ R
arcctg (−x) = π − arcctgx,
(h) ∀x ∈ R
arctgx + arcctgx =
π
2
,
(i) ∀x ∈ [0, 1]
arcsin x = arccos
√
1 − x
2
,
(j) ∀x ∈ [0, 1]
arcsin x =
arcctg
√
1−x
2
x
,
(k) ∀x ∈ [0, 1]
arccos x = arcsin
√
1 − x
2
,
(l) ∀x ∈ [0, 1]
arccos x =
arctg
√
1−x
2
x
,
(m) ∀x ∈ (0, +∞)
arctgx = arcctg
1
x
,
(n) ∀x ∈ (0, +∞)
arcctgx = arctg
1
x
,
(o) ∀x ∈ (0, +∞)
arctgx = arccos
1
√
1+x
2
,
(p) ∀x ∈ (0, +∞)
arcctgx = arcsin
1
√
1+x
2
.
4. Obliczy¢ warto±¢: arcsin
−
√
2
2
+ arccos
√
3
2
+
arctg tg
137π
6
+
arcctg −
√
3
.
1