Instrukcja do konstrukcji kwadratu na osi obrotu czyli zadanie z ćwiczeń prowadzonych przez Pana
profesora w dniu 18.11.2014
Na tablicy mamy narysowane pary prostych równoległych na osi pionowej i poziomej (a”,b” i a’,b’)
oraz oś x
12
naszym zadaniem jest wykreślenie rzutu kwadratu ABCD należącego do płaszczyzny
𝜶
o boku = 6 cm
UWAGA! Najlepiej konfrontować treść niniejszej instrukcji wraz z własnym rysunkiem i sprawdzać
gdzie znajdują się dane punkty, proste, przecięcia itp. gdyż nie wszystko jest tak w 100% dowolne
jakby się mogło wydawać. Jeśli nadal coś będzie niezrozumiałe służę pomocą.
1. Znajdujemy punkty wynoszące 0, czyli miejsca w których obie proste pary prostych
równoległych na płaszczyźnie pionowej (górna część naszego rysunku) a” i b” przecinają się z
osią x
12
oznaczamy je odpowiednio 1” i 2”
2. Tworzymy odnoszące z punktów 1” i 2” prostopadłe do osi x
12
odpowiednio na proste a’ i b’
3. W miejscu przecięcia się prostych i odnoszących tworzą się punkty 1’ i 2’
4. Łączymy punkty 1’ i 2’ a powstała prosta jest naszą osią obrotu L’ (oczywiście przedłużamy
∈sobie tą prostą w obie strony)
5. Analogicznie: skoro punkty 1’ i 2’ tworzą oś obrotu L’ to prosta na której znajdują się punkty 1” i
2” to oś obrotu L”
6. Na jednej z prostych równoległych a’, b’ dowolnie obieramy punkt A’
7. Rysujemy odnoszącą z punktu A’ na prostą a” lub b” w zależności na jakiej prostej znajdującej
się na płaszczyźnie poziomej zaznaczyliśmy nasz punkt A’ (jeśli A’ ∈ b’ to A” ∈ b” oraz jeśli A’ ∈
a’ to A” ∈ a”)
8. W miejscu przecięcia się odnoszącej z punktu A’ z osią x
12
powstaje punkt pomocniczy I” (jeden
rzymskie)
9. Punkt A’ obraca się po linii prostej a jej ruchem jest prosta, czyli rysujemy dowolną prostą
wychodzącą z punktu A’ do przecięcia z osią x
12
10. W miejscu przecięcia prostej wychodzącej z punktu A’ z osią obrotu L’ powstaje nam punkt
S
A0
=S
A
’ czyli nasz środek obrotu
11. Tworzymy odnoszącą z punktu S
A0
=S
A
’ na oś x
12
powstały tam punkt oznaczamy jako S
A
”
12. Tworzymy kład, czyli prowadzimy proste prostopadłe do prostej A’S
A0
=S
A
’ wychodzące z
punktów A’ i S
A0
=S
A
’
13. Wbijamy nóżkę cyrkla w punkt pomocniczy I” na osi x
12
i odmierzamy nim odległość do punktu
A”
14. Nanosimy tę wartość na prostą (prostopadłą do prostej A”S
A0
=S
A
’) wychodzącą z punktu A’
15. W powstałym przecięciu tworzy nam się punkt A
X
16. Łączymy powstały punkt A
X
z punktem S
A0
=S
A
’
17. Wbijamy nóżkę cyrkla w punkt S
A0
=S
A
’ i zataczamy z tego punktu półokrąg o rozpiętości
S
A0
=S
A
’ A
X
(jeśli wrysujemy pełny okrąg to oznaczy nam on naszą płaszczyznę obrotu
𝜶 )
18. W miejscu przecięcia wrysowanego łuku i przedłużonej prostej A’ S
A0
=S
A
’ powstaje punkt A
0
czyli pierwszy punkt wierzchołkowy naszego kwadratu A
0
B
0
C
0
D
0
19. Wrysowujemy nasz kwadrat A
0
B
0
C
0
D
0
w płaszczyźnie obrotu
𝜶 o boku 6 cm rozpoczynając od
wierzchołka A
0
20. Przedłużamy prostą D
0
A
0
do przecięcia z osią obrotu L’ w miejscu przecięcia powstaje punkt
pomocniczy II’
21. Punkt pomocniczy II’ łączymy z punktem A’ tworząc prostą
22. Tworzymy odnoszącą z punktu D
0
prostopadłą do osi obrotu L’ przecinającą prostą IIA’ na
przecięciu powstaje punkt D’
23. Przedłużamy prostą A
0
B
0
do przecięcia z osią obrotu L’ w miejscu przecięcia powstaje punkt
pomocniczy III’
24. Punkt pomocniczy III’ łączymy z prostą A’ tworząc prostą
25. Tworzymy odnoszącą z punktu B
0
prostopadłą do osi obrotu L’ przecinającą prostą III’A’ na
przecięciu powstaje punkt B’
26. Tworzymy odnoszącą z punktu pomocniczego III’ do przecięcia z osią x
12
na przecięciu tworzy
nam się punkt pomocniczy III”
27. Łączymy punkt pomocniczy III” z punktem A”
28. Tworzymy odnoszącą z punktu B’ prostopadłą do osi x
12
przecinającą prostą A”III” na
przecięciu tworzy nam się punkt B”
29. Przedłużamy przekątną B
0
D
0
do przecięcia z osią obrotu L’ w miejscu przecięcia powstaje
punkt pomocniczy IV’
30. Tworzymy odnoszącą z punktu pomocniczy IV’ do przecięcia z osią x
12
na przecięciu tworzy
nam się punkt pomocniczy IV”
31. Punkt pomocniczy IV” łączymy z punktem B”
32. Tworzymy odnoszącą z punktu D
0
prostopadłą do osi x
12
do przecięcia z prostą IV”B” na
przecięciu tworzy nam się punkt D”
33. Grubą linią łączymy punkty D’ z A’ i A’ z B’ i D” z A” i A” z B”
34. Na obu rzutniach (pionowej i poziomej), rzutem naszego kwadratu A
0
B
0
C
0
D
0
będą
równoległoboki A’B’C’D’ oraz A”B”C”D”, wystarczy stworzyć proste równoległe do prostych które już
posiadamy aby w ich przecięciu otrzymać punkt C’ oraz C”.
Dziękuję za uwagę. Mam nadzieje że materiały okazały się pomocne.