Fizyka semestr II

background image

1












































background image

2















background image

3

Skrypt z wykładów

Politechnika Gdańska

Rok akademicki 2012/2013

Budownictwo

Semestr II

Opracowanie:

Erwin Wojtczak

background image

4




















































background image

5

SPIS TREŚCI

FALE ELEKTROMAGNETYCZNE ............................................................................................................ 7

Równania Maxwella........................................................................................................................... 7
Fale elektromagnetyczne ................................................................................................................. 7
Dyfrakcja i interferencja .................................................................................................................... 8
Polaryzacja ........................................................................................................................................ 10
Prawo odbicia................................................................................................................................... 10
Zasada Fermata................................................................................................................................ 11
Prawo załamania ............................................................................................................................. 11
Całkowite wewnętrzne odbicie i kąt graniczny .......................................................................... 12
Kąt i prawo Brewstera ...................................................................................................................... 13
Cienkie warstwy ................................................................................................................................ 13
Pryzmat i rozszczepienie światła ..................................................................................................... 13
Soczewki............................................................................................................................................. 13
Zdolność skupiająca (zbierająca).................................................................................................. 14


PROMIENIOWANIE TERMICZNE ........................................................................................................ 15

Widmowa zdolność emisyjna ......................................................................................................... 15
Widmowa zdolność absorpcyjna .................................................................................................. 15
Ciało doskonale czarne .................................................................................................................. 15
Zależność zdolności emisyjnej od długości fali ............................................................................ 15
Prawo przesunięć Wiena ................................................................................................................. 16
Prawo Stefana - Boltzmanna: ......................................................................................................... 16
Teoria Rayleigha-Jeansa ................................................................................................................. 16
Teoria Wiena...................................................................................................................................... 16
Teoria Plancka................................................................................................................................... 16


FIZYKA RELATYWISTYCZNA ............................................................................................................... 18

Teoria eteru........................................................................................................................................ 18
Doświadczenie Michelsona - Morley’a ......................................................................................... 18
Postulaty Einsteina ............................................................................................................................ 18
Czasoprzestrzeń ................................................................................................................................ 18
Transformacja Lorentza ................................................................................................................... 19
Dylatacja czasu ................................................................................................................................ 19
Skrócenie Lorentza ........................................................................................................................... 19
Transformacja Lorentza dla prędkości .......................................................................................... 20
Prawa mechaniki klasycznej prawdziwe dla mechaniki relatywistycznej ............................... 21
Równoważność masy i energii........................................................................................................ 21
Zależność energii całkowitej ciała od pędu................................................................................ 21


DUALIZM KORPUSKULARNO-FALOWY ............................................................................................. 22

Energia fotonu................................................................................................................................... 22
Doświadczenie Lebiediewa............................................................................................................ 22
Doświadczenie z lampą rtęciową i elektrometrem .................................................................... 22
Efekt fotoelektryczny zewnętrzny ................................................................................................... 22
Promieniowanie Roentgena ........................................................................................................... 24
Doświadczenie Comptona ............................................................................................................. 25





background image

6

FALOWA NATURA MATERII ............................................................................................................... 26

Teoria budowy atomu ..................................................................................................................... 26
Świecenie gazów.............................................................................................................................. 26
Postulaty Bohra.................................................................................................................................. 26
Wyprowadzenie wzoru Rydberga z postulatów Bohra............................................................... 26
Teoria de Broglie’a i jego postulat ................................................................................................. 27
Sinusoidalna fala płaska.................................................................................................................. 28
Funkcja falowa.................................................................................................................................. 28
Zasada nieoznaczoności Heisenberga ......................................................................................... 29
Równanie Schrödingera .................................................................................................................. 29
Własności funkcji falowej................................................................................................................. 30
Studnia (jama) potencjału.............................................................................................................. 30
Oscylator kwantowy ........................................................................................................................ 30
Zakres Pauliego ................................................................................................................................. 31


FIZYKA JĄDROWA............................................................................................................................. 32

Jądro atomowe ................................................................................................................................ 32
Defekt masy....................................................................................................................................... 32
Siły jądrowe........................................................................................................................................ 32
Własności sił jądrowych................................................................................................................... 33
Model kroplowy ................................................................................................................................ 33
Model powłokowy............................................................................................................................ 33
Studnie potencjału protonów i neutronów .................................................................................. 34
Promieniotwórczość ......................................................................................................................... 34
Rodzaje promieniowania ................................................................................................................ 34
Rozpad α............................................................................................................................................ 34
Rozpad β ............................................................................................................................................ 35
Model powłokowy a rozpady ........................................................................................................ 35
Przemiana γ ....................................................................................................................................... 35
Promieniotwórczość naturalna....................................................................................................... 35
Promieniowanie jonizujące ............................................................................................................. 35
Izotopy promieniotwórcze............................................................................................................... 36
Prawo rozpadu promieniotwórczego ........................................................................................... 36
Czas połowicznego zaniku (rozpadu)........................................................................................... 36
Średni czas życia ............................................................................................................................... 36
Aktywność promieniotwórcza ........................................................................................................ 36
Szeregi promieniotwórcze ............................................................................................................... 37
Detektory promieniowania ............................................................................................................. 37
Pomiary promieniowania ................................................................................................................ 37
Zjawiska osłabiające promieniowanie.......................................................................................... 38












background image

7

FALE ELEKTROMAGNETYCZNE

Równania Maxwella

I prawo Maxwella

=

s

V

r

dV

dS

E

ρ

ε

ε

0

1

Jest modyfikacją prawa Gaussa.

II prawo Maxwella

=

s

dS

B

0

Świadczy o braku istnienia monopolu magnetycznego.

III prawo Maxwella

+

=

l

p

E

r

r

I

dt

d

dl

B

φ

ε

ε

µ

µ

0

0

Rozszerzenie prawa Ampere’a o prąd przesunięcia. Uwzględnia, że prąd jest wytwarzany
nie tylko przez poruszające się ładunki - prąd przewodzenia (I

p

), ale także przez zmianę

strumienia pola elektrycznego w czasie. Sumaryczny prąd zostaje powiększony o prąd
przesunięcia
. Wykorzystujemy tu wzór

S

E

E

=

φ

dla pola jednorodnego lub ogólnie:

=

S

E

dS

E

φ

.

IV prawo Maxwella

=

l

B

dt

d

dl

E

φ

Wykorzystujemy w nim wzór

S

B

B

=

φ

dla pola jednorodnego lub ogólnie:

=

S

B

dS

B

φ

.

Ponadto

=

dr

E

V

.

Fale elektromagnetyczne

Zmienne w czasie pole magnetyczne o indukcji B powoduje powstanie pola elektrycznego o
natężeniu E. Wektor natężenia jest prostopadły do wektora indukcji. Dalej pole elektryczne
wytwarza pole magnetyczne itd. Wektory B i E są funkcjami czasu.






W efekcie powstaje fala
elektromagnetyczna

Iloczyn wektorowy

B

E

×

wyznacza

kierunek rozchodzenia się fali.

B

E

E

B

λ

background image

8

Ponadto:

ωt)

(kx

E

E

m

=

sin

oraz

ωt)

(kx

B

B

m

=

sin

Prędkość rozchodzenia się fali:

r

r

v

µ

µ

ε

ε

0

0

1

=


Dla próżni:
µ

0

0

=1

ε

r

=8,85—10

-12

2

2

C

m

N

µ

r

=4π—10

-7

A

m

T

v≈3—10

8

s

m

=c

W dowolnym ośrodku:

r

r

c

v

µ

ε

=

,

Gdzie

r

r

n

µ

ε

=

jest współczynnikiem załamania fali

elektromagnetycznej w danym ośrodku.

Widmo fal elektromagnetycznych jest bardzo rozległe, zakres jest ogromny.

Dyfrakcja i interferencja

Dyfrakcja i interferencja dla fali elektromagnetycznej zachodzą tak, jak dla fal
mechanicznych. Korzystamy z zasady Huygensa.
‘Jeżeli powierzchnia falowa (lub czoło fali) dociera do pewnego punktu ośrodka, to staje się
on źródłem nowej fali kulistej’
Stąd wynika, że gdy fala trafia na szczelinę, to wytworzona zostaje nowa fala kulista.
Dyfrakcją nazywamy ugięcie fali na przeszkodzie.
Interferencja polega na nakładaniu się fal, które powoduje ich wzmocnienie lub
wygaszenie.

Mamy do czynienia z falami spójnymi, tj. falami o takich
samych fazach początkowych i drgającymi z tą samą
częstotliwością.

)

kx

t

(

A

y

1

1

sin

=

ω

)

kx

t

(

A

y

2

2

sin

=

ω

)

x

x

k

t

(

)

x

x

(k

A

y

)

x

x

(k

)

x

x

k

t

(

A

y

)

kx

t

(

A

)

kx

t

(

A

y

y

y

y

2

sin

2

cos

2

2

cos

2

sin

2

sin

sin

2

1

1

2

1

2

2

1

2

1

2

1

+

=

+

=

+

=

+

=

ω

ω

ω

ω


Amplitudą fali wypadkowej jest wyrażenie:

)

x

x

(k

A

2

cos

2

1

2

(nie zależy od częstotliwości

drgań).

Z

2

Z

1

x

1

x

2

P

background image

9

ºWarunek wzmocnienia:



2

2

2

2

2

,

2

1

2

cos

1

2

1

2

1

2

1

2

1

2

1

2

λ

λ

λ

π

λ

π

λ

π

π

=

=

=

=

=

=

±

=

n

x

x

n

x

x

n

x

x

n

x

x

k

N

n

n

x

x

k

)

x

x

(k


ºWarunek wygaszenia:



(

)

(

)

2

1

2

1

2

2

1

2

1

2

2

2

2

,

2

2

0

2

cos

1

2

1

2

1

2

1

2

1

2

1

2

λ

λ

λ

π

π

λ

π

λ

π

π

π

+

=

+

=

+

=

+

=

=

+

=

=

n

x

x

n

x

x

n

x

x

n

x

x

k

N

n

n

x

x

k

)

x

x

(k

Aby nastąpiło wzmocnienie, różnica dróg musi być równa parzystej wielokrotności

połówek długości fali. Natomiast, aby nastąpiło wygaszenie, różnica dróg musi być równa
nieparzystej wielokrotności połówek długości fali.

Dla fal drgających w przeciwnych fazach sytuacja jest inna - warunek wygaszenia staje się

warunkiem wzmocnienia i odwrotnie (analogiczne wyprowadzenie). Wzory zmieniają się,
ponieważ druga fala jest przesunięta w fazie o π.

)

kx

t

(

A

y

1

1

sin

=

ω

)

kx

t

(

A

y

π

ω

+

=

2

2

sin


Fale elektromagnetyczne pochodzące z tego samego źródła mają tę samą częstotliwość,
ale różne długości.
Długość fali:

ν

v

=

Λ

v - prędkość rozchodzenia się fali stała dla danego ośrodka
ν - częstotliwość drgań fali, związana ze źródłem [ν]=Hz

Zaburzenie elektromagnetyczne jest falą, ponieważ:
1.

Ulega dyfrakcji.

2.

Interferują zaburzenia (dla których różnica faz jest stała w czasie).

3.

Ulega polaryzacji.


Dyfrakcja fali elektromagnetycznej. Aby zaobserwować dyfrakcję potrzebujemy siatki
dyfrakcyjnej.

Może nią być szklana płytka z rysami, które następnie wytrawiono kwasem.
Szczelina musi mieć szerokość rzędu długości fali (d~λ) [400-700nm].

d

background image

10

Stała siatki (d) - odległość pomiędzy dwiema sąsiednimi rysami. Zwykle to ok. 500 lub 1000
rys na 1mm. Wówczas stała ma wartość d=1/500 mm (d=1/1000 mm).

Każda szczelina jest źródłem nowej fali (z zasady Huygensa).
Równanie siatki dyfrakcyjnej:

α

λ

sin

d

n

=

n - numer prążka
λ - długość fali monochromatycznej
d - stała siatki dyfrakcyjnej
α

- kąt ugięcia

Fala elektromagnetyczna - zaburzenie pola magnetycznego i pola elektrycznego. Zmienne
pole magnetyczne wytwarza pole elektryczne, a zmienne pole elektryczne wytwarza pole
magnetyczne. Pola te są wzajemnie prostopadłe i, podobnie, ich wektory drgają w

płaszczyznach do siebie prostopadłych. Za własności optyczne fali odpowiada wektor

E

,

ponieważ w ogólności, we wzorze

r

r

n

µ

ε

=

, ε

r

〉〉 µ

r

.

Polaryzacja

Polaryzacja - uporządkowanie drgań wektora natężenia pola elektrycznego

(

E

). Polaryzacji dokonuje się poprzez stosowanie polaryzatorów. Są to

specjalne przyrządy, które powodują osłabienie wektora natężenia pola

poprzez „przepuszczenie tylko części wektorów

E

”. Polaryzacja następuje

także poprzez odbicie, albo przy użyciu specjalnych kryształów (np.
kryształów dwójłomnych). Np polaryzacja liniowa (rys. obok).

Światło porusza się po liniach prostych, ale może ulec załamaniu, odbiciu lub rozproszeniu.

Zwierciadła - powierzchnie, które całkowicie odbijają padające na nie światło. Wyróżniamy
zwierciadła płaskie, wklęsłe i wypukłe.

Zad.

Jaka

powinna

być

wysokość

zwierciadła

płaskiego, aby było ono w stanie w całości odbić
obiekt o wysokości H?
Odp: Zwierciadło musi mieć wysokość co najmniej ½H.

Promień krzywizny zwierciadła płaskiego wynosi ∞, nie następuje skupienie promieni.
Zwierciadła wklęsłe oraz wypukłe mają skończone promienie krzywizny i skupiają one
promienie świetlne w punkcie zwanym ogniskiem zwierciadła (wklęsłe w ognisku
rzeczywistym a wypukłe w pozornym). Odległość ogniska od zwierciadła
nazywamy ogniskową, oznaczamy f, a jej długość to połowa promienia krzywizny.

Zdolność skupiającą zwierciadła określamy jako odwrotność ogniskowej:

f

Z

1

=

[ ]

D

Z

=

Prawo odbicia

(podawane też jako dwa):

1. Promienie: padający i odbity oraz normalna do powierzchni odbijającej leżą w jednej
płaszczyźnie.
2. Kąt padania jest równy kątowi załamania (kąty pomiędzy odpowiednimi promieniami a
normalną do powierzchni odbijającej).

α

2 1

0 1 2

ekran

źródło
fali

przedmiot zwierciadło obraz

½H

H H

2

R

f

=

background image

11

(

)

(

)

(

)

β

α

β

α

=

=

+

=

+

=

+

+

=

+

+

+

=

sin

sin

0

0

2

)

(

2

2

2

1

0

2

2

2

2

2

1

2

2

2

2

2

1

2

2

2

2

2

1

x

d

h

x

d

x

h

x

x

d

h

x

d

x

h

x

x

d

h

x

d

x

h

x

c

dx

dt

n

c

v

n

c

v

r

r

=

=

=

=

0

0

0

0

0

0

1

1

µ

ε

µ

ε

µ

ε

µ

ε

1

2

2

1

sin

sin

n

n

v

v

=

=

β

α

Zasada Fermata:

„Promień świetlny przebywa drogę pomiędzy dwoma punktami w

ekstremalnym czasie (tj. najkrótszym lub najdłuższym)”.


Dowód prawa odbicia z zasady Fermata.

Droga światła:

(

)

2

2

2

2

2

1

x

d

h

x

h

s

+

+

+

=

Czas przebycia drogi przez światło:

(

)

+

+

+

=

=

2

2

2

2

2

1

1

x

d

h

x

h

c

c

s

t

Czas zależy od odległości źródła od punktu odbicia:

( )

x

f

t

=

Skoro czas ma być ekstremalny, to:






α

,

β

są ostre


Załamanie światła.




n>0 (współczynnik załamania - zależy
od własności elektrycznych ośrodka)

Prawo załamania

Promień padający, promień załamany oraz normalna
do powierzchni łamiącej leżą w jednej płaszczyźnie.
Ponadto stosunek sinusa kąta padania do sinusa kąta
załamania jest równy stosunkowi prędkości promieni
świetlnych w obu ośrodkach oraz odwrotnemu
stosunkowi współczynników załamania promieni w tych
ośrodkach.


W szczególnym przypadku, jeżeli ośrodkiem, z którego
wychodzi promień jest powietrze, mamy zależność:

n

=

β

α

sin

sin

, gdzie n jest współczynnikiem załamania w

ośrodku, do którego trafia promień.

α

β

x d-x

d

Z - źródło światła, D - detektor

h

1

h

2

Z

D

α

β

n

1

n

2

1

1

n

c

v

=

2

2

n

c

v

=

2

1

v

v

α

β

n

1

n

2

1

1

n

c

v

=

2

2

n

c

v

=

2

1

v

v

α


β

background image

12

(

)

(

)

(

)

(

)

1

2

2

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

sin

sin

sin

sin

0

2

)

(

2

2

2

1

0

0

1

n

n

n

n

x

d

h

x

d

n

x

h

x

n

x

d

h

x

d

n

x

h

x

n

x

d

h

x

d

n

x

h

x

n

c

dx

dt

x

d

h

n

x

h

n

c

t

=

=

+

=

+

+

+

=

+

+

+

=

=

+

+

+

=

β

α

β

α

(

)

(

)

(

)

(

)

2

1

2

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

sin

sin

sin

sin

)

(

1

1

)

(

1

1

0

2

)

(

2

1

2

2

1

0

0

1

1

v

v

v

v

x

d

h

x

d

v

x

h

x

v

x

d

h

x

d

v

x

h

x

v

x

d

h

x

d

v

x

h

x

v

dx

dt

x

d

h

v

x

h

v

t

=

=

+

=

+

+

+

=

+

+

+

=

=

+

+

+

=

β

α

β

α


α

gr

n

2

n

1

β=90

º


α


α

1

2

sin

n

n

gr

=

α

Dowód prawa załamania z zasady Fermata.
Droga światła jest różna o obu ośrodkach:

2

2

1

1

x

h

s

+

=

(

)

2

2

2

2

x

d

h

s

+

=


Czas przebycia drogi przez światło:

(

)

(

)

+

+

+

=

+

+

+

=

+

=

+

=

+

=

2

2

2

2

2

2

1

1

2

2

2

2

2

2

1

1

2

2

1

1

2

2

1

1

2

1

1

x

d

h

n

x

h

n

c

x

d

h

c

n

x

h

c

n

t

s

c

n

s

c

n

v

s

v

s

t

t

t

Czas zależy od odległości źródła od punktu odbicia:

( )

x

f

t

=

Skoro czas ma być ekstremalny, to:












Całkowite wewn

ę

trzne odbicie i k

ą

t graniczny

Mamy z nimi do czynienia przy przejściu z ośrodka
gęstszego optycznie do rzadszego. Kąt graniczny
jest to kąt padania, dla którego kąt załamania jest
kątem prostym. Wówczas promień załamany ślizga
się po powierzchni załamującej. Dla kątów
większych niż kąt graniczny nie obserwujemy
promienia załamanego w drugim ośrodku -
następuje wtedy całkowite wewnętrzne odbicie.



Zjawisko całkowitego wewnętrznego odbicia jest
wykorzystywane w światłowodach.



x d-x

α

d

Z - źródło światła,
D - detektor


h

1

h

2

Z

D

n

1

n

2

1

1

n

c

v

=

2

2

n

c

v

=

β

α

β

background image

13

1

2

sin

sin

n

n

B

=

β

α

B

α

β

=

o

90

B

B

α

α

β

cos

)

90

sin(

sin

=

=

o

1

2

n

n

tg

B

=

α

n

2

n

1

β β β

α


α

α


α

β β

cienka
warstwa





+





=

2

1

1

1

1

1

R

R

n

n

f

o

s

y

x

f

1

1

1

+

=

K

ą

t i prawo Brewstera

Zawsze powstaje promień odbity - światło nigdy nie
załamuje się całościowo.
Prawo Brewstera: Jeżeli promień załamany tworzy z
promieniem odbitym kąt prosty, to odbita wiązka
światła jest całkowicie spolaryzowana liniowo. Kąt
padania, dla którego zachodzi taka sytuacja,
nazywamy kątem Brewstera (

α

B

).


Cienkie warstwy

Dla wiązki światła obserwujemy interferencję na
cienkich

warstwach.

Najpierw

następuje

równoległe przesunięcie wiązki, fale ulegają
rozszczepieniu, a następnie interferują.

Pryzmat i rozszczepienie

ś

wiatła

Światło w pryzmacie zostaje rozszczepione
na światła monochromatyczne.


W szczególnym przypadku, gdy
promień biegnący wewnątrz
pryzmatu jest równoległy do
jego podstawy, możemy złożyć
dwa pryzmaty podstawami (lub
wierzchołkami), oszlifować je i

otrzymać w ten sposób soczewkę skupiającą - wypukłą (lub
rozpraszającą - wklęsłą).

Soczewki

Każda soczewka posiada ognisko, przy czym soczewka skupiająca
posiada ognisko rzeczywiste (miejsce przecięcia promieni skupionych),
natomiast soczewka rozpraszająca - ognisko pozorne (miejsce
przecięcia przedłużeń promieni rozproszonych).
Równanie soczewki (prawdziwe też dla zwierciadeł):

f - ogniskowa soczewki
x - odległość przedmiotu od soczewki
y - odległość obrazu od soczewki

Ogniskowa soczewki zależy od materiału soczewki oraz od otoczenia. Ma wartość dodatnią
dla soczewki skupiającej i ujemną dla rozpraszającej.

f - ogniskowa soczewki
n

s

, n

o

- współczynniki załamania: soczewki i otoczenia

R

1

, R

2

- promienie krzywizny soczewki


α

B

α

B

n

1

n

2

β

background image

14

n

R

f

R

n

f

R

R

R

n

f

R

R

n

f

Z

Z

Z

z

s

u

2

2

1

2

2

2

1

2

1

1

1

1

2

1

2

=

=

+

=

+









=

+

=

Soczewkę skupiającą można łatwo zmienić w rozpraszającą i na odwrót poprzez
umieszczenie jej w odpowiednim środowisku, takim, by ogniskowa zmieniła znak.
Ogniskowa jest uzależniona od rodzaju padającego światła, bo jej wartość zmienia się
wobec zmian współczynnika załamania, który jest z kolei uzależniony od długości fali.

Aberracja chromatyczna
Jest to zjawisko występujące w przypadku, gdy ognisko jest rozmyte, ponieważ padające
światło białe zostaje rozszczepione, a pojedyncze światła monochromatyczne skupiają się w
różnych punktach.

Zjawiska optyczne są szeroko wykorzystywane w różnego rodzaju przyrządach optycznych
(np. lupa, luneta, teleskop, mikroskop) oraz w okulistyce.

Zdolno

ść

skupiaj

ą

ca (zbieraj

ą

ca)

(dioptria) Zastępcza zdolność skupiająca układu:

Zad. Jaka jest ogniskowa układu, złożonego ze zwierciadła
wklęsłego o promieniu R, wypełnionego cieczą o współczynniku
załamania n?
Wiązka dwa razy przechodzi przez
soczewkę i raz zostaje odbita przez
zwierciadło. Korzystamy z zastępczej
zdolności skupiającej.

Odp:

n

R

f

2

=

.
























f

Z

s

1

=

[ ]

m

D

Z

1

1

=

=

=

=

n

i

i

n

Z

Z

1

background image

15

PROMIENIOWANIE TERMICZNE

Widmo fal elektromagnetycznych jest rozległe.
Na granicy światła widzialnego i podczerwieni
znajduje się zakres promieniowania cieplnego
(termicznego).

Wszystkie ciała absorbują i emitują ciepło.
Jeżeli T

c

>T

o

, to przeważa emisja. Jeżeli T

c

<T

o

- przeważa absorpcja.


Własności widma promieniowania termicznego:
- Widmo jest ustalane w zależności od długości fali (λ) lub od częstotliwości drgań (ν),
powiązanych wzorem:

λ

ν

c

=

.

- Część zakresu promieniowania cieplnego pokrywa się z zakresem widzialnym.
- Widmo promieniowania termicznego zależy od temperatury i barwy ciała.
- Wielkościami charakteryzującymi ciało są zdolność emisyjna oraz zdolność absorpcyjna.

Widmowa zdolno

ść

emisyjna

- wielkość fizyczna liczbowo równa stosunkowi energii

wypromieniowanej przez jednostkę powierzchni ciała w jednostce czasu w postaci fali
elektromagnetycznej w bardzo wąskim przedziale częstotliwości (ν;ν+dν) lub w bardzo

wąskim przedziale długości fali (λ;λ+dλ).

S

t

E

=

ε





=

2

2

m

W

m

s

J

Widmowa zdolno

ść

absorpcyjna

- monochromatyczny współczynnik pochłaniania - wielkość

wskazująca, jaka część energii fal elektromagnetycznych w wąskim przedziale częstotliwości
(ν;ν+dν) lub w wąskim przedziale długości fali (λ;λ+dλ), padającej na powierzchnię ciała
zostaje przez to ciało pochłonięta. a [1] (wielkość bezwymiarowa).

Ciało doskonale czarne

Model ciała wprowadzony przez Kirchhoffa, opisujący ciało w pełni
pochłaniające padające nań promieniowanie niezależnie od kierunku
padania tego promieniowania, składu widmowego i polaryzacji. Niczego
nie odbija ani nie przepuszcza, stąd jego zdolność absorpcyjna ma
wartość 1.
Ciało doskonale czarne wyobrażano sobie jako wnękę z małym otworkiem, wypełnioną
sadzą. W takiej sytuacji światło wpada we wnękę, ale nie może jej opuścić, gdyż wciąż
odbija się w jej wnętrzu.
Kirchhoff odkrył i sformułował prawo dotyczące promieniowania cieplnego. Mówi ono, iż
stosunek zdolności emisyjnej do zdolności absorpcyjnej w danej temperaturze dla danego
ciała jest wielkością stałą i równą zdolności emisyjnej ciała doskonale czarnego w tej

temperaturze.

( )

( )

( )

T

E

T

a

T

,

,

,

ν

ν

ν

ε

=

Konsekwencją tego prawa jest fakt, iż ciała, które silniej emitują promieniowanie, także silniej
je absorbują - dobre emitery są dobrymi absorbentami.

Zale

ż

no

ść

zdolno

ś

ci emisyjnej od długo

ś

ci fali

Dwa prawa dotyczące widma promieniowania
termicznego

zaobserwowano

empirycznie:

prawo przesunięć Wiena oraz prawo Stefana-
Boltzmanna.

λ

[nm]

400

700

zakres widzialny

podczerwień

promieniowanie termiczne

ε(λ,T)

λ

background image

16

ε(λ,T)





2

m

W

[ ]

m

λ

λ

1

λ

2

T

1

T

2

<

T

1

Prawo przesuni

ęć

Wiena:

„maksymalna długość fali

promieniowania termicznego jest odwrotnie proporcjonalna

do temperatury”.

T

1

~

max

λ

T

b

=

max

λ

, b - stała.

Wynika stąd, że maksimum widma promieniowania cieplnego
przesuwa się w zależności od temperatury.
Prawo Wiena ma zastosowanie w astrofizyce - służy do
określania temperatury gwiazd. Jest też wykorzystywane w
termometrach wysokotemperaturowych, np. do pomiarów
temperatur w piecach hutniczych (nie jest możliwy pomiar
bezpośredni).

Prawo Stefana - Boltzmanna:

„całkowita zdolność emisyjna ciała jest wprost proporcjonalna

do czwartej potęgi jego temperatury”.

4

)

(

T

T

δ

ξ

=

Całkowita zdolność emisyjna jest polem pod wykresem
zdolności emisyjnej. Temperaturę podajemy w Kelwinach.
Dzięki temu prawu wyznaczono temperaturę Słońca.

„Fizycy to dziwni ludzie…” … więc postanowili dopasować
teorię do obserwacji empirycznych. Na początku
powstały: teoria Rayleigha-Jeansa oraz teoria Wiena.

Teoria Rayleigha-Jeansa

- wykorzystano w niej fakt,

iż w ciele doskonale czarnym opisanym jako wnęka z
sadzą mamy do czynienia ze stojącą falą przestrzenną.
Otrzymano wówczas wzór na zdolność emisyjną postaci:

3

2

8

)

,

(

c

kT

T

πν

ν

ε

=

Zależność ta sprawdza się tylko dla fal długich. W falach krótkich miałaby miejsce tzw.
„katastrofa w nadfiolecie” - emitowana byłaby nieskończona energia, co nie jest możliwe.

Teoria Wiena

- bazuje na teorii gazu doskonałego. Dla gazów określamy średnie prędkości

cząsteczek, istnieje pewien rozrzut (ich wartości mogą być mniejsze lub większe dla różnych
cząsteczek). Prawdopodobieństwo wystąpienia danej prędkości w pewnej przestrzeni
opisuje rozkład Maxwella. Opisuje on dobrze również rozkład prędkości cząsteczek w
gorącym ciele. Wien określił zależność:

=

T

C

C

T

λ

λ

λ

ε

2

5

1

exp

)

,

(

,

gdzie C1,C2 - stałe. Teoria Wiena okazała się być prawidłowa tylko dla fal krótkich.

W żadnej z dwóch teorii nie otrzymano maksimum.

Teoria Plancka

Planck, nieco później zmodyfikował wzór Wiena, aby był on prawidłowy dla wszystkich
długości fal. Powrócił do teorii Newtona, który jako pierwszy stwierdził, że światło jest wiązką

λ

ε(λ,T)

)

(T

ξ

ε(λ,T)

λ

R-J

W

background image

17

korpuskuł. Planck nazwał je fotonami i określił, że energia przenoszona przez każdy z nich ma

wartość:

λ

ν

c

h

h

E

f

=

=

, gdzie h=6,65—10

-34

[J— s]

Ciało doskonale czarne w założeniu miało nie emitować żadnej energii. Jednak każde ciało
składa się z drgających atomów, które wysyłają konkretną porcję energii. Każdy oscylator
emituje energię równą wielokrotności pojedynczej porcji energii:

ν

nh

E

=

.

Wzór na zdolność emisyjną, który dobrze opisuje całą krzywą doświadczalną ma postać:

1

exp

2

)

,

(

5

3

=

λ

λ

π

λ

ε

kT

hc

h

c

T

.

Z warunku:

0

=

λ

ε

d

d

, otrzymamy zależność:

T

const

=

max

λ

(prawo przesunięć Wiena).

Z kolei po scałkowaniu:

( )

λ

λ

ε

d

T

0

,

otrzymujemy:

4

)

(

T

T

δ

ξ

=

(prawo Stefana-Boltzmanna).

Teorię Plancka potwierdzono później poprzez zjawiska fotoelektryczne oraz efekt Comptona,
a także poprzez badanie widm wodoru i gazów wodoropodobnych.

































background image

18

FIZYKA RELATYWISTYCZNA

Zgodnie z transformacją Galileusza światło powinno mieć różne prędkości względem

różnych układów odniesienia [

u

v

v

+

=

'

,

const

u

=

|

|

].

Teoria eteru

Stwierdzono, że musi istnieć bezwzględny układ odniesienia i chciano zmierzyć prędkość
ziemi względem niego. Skoro istnieje pewien ‘zewnętrzny układ odniesienia’, to prędkości na
Ziemi, w tym prędkość światła, będą różne w różnych kierunkach. Okazało się jednak, że
prędkość światła jest w każdym kierunku taka sama.

Do

ś

wiadczenie Michelsona - Morley’a

Doświadczenie polegało na wykorzystaniu
ogromnego interferometru. Składał się on ze
źródła światła (Ś), półprzepuszczalnej błony
światłoczułej (B), dwóch zwierciadeł (Z

1

,Z

2

) oraz

detektora (D).
Wiązka światła ze źródła trafiała na błonę i
rozszczepiała

się

na

dwie

wiązki

o

prostopadłych kierunkach, które docierając do
detektora

pokonywały

różne

drogi.

Z

transformacji

Galileusza

wynikałoby,

że

poruszały się one również z innymi prędkościami
(jeżeli uwzględnimy prędkość ruchu Ziemi). Świadczyć o tym powinny prążki na detektorze,
których jednak nie zaobserwowano. Wobec tego prędkość obu wiązek światła powinna być
identyczna. Doświadczenie dowiodło, że prędkość światła jest jednakowa w każdym
układzie odniesienia i w ten sposób obaliło istnienie eteru. Doświadczenie było powtarzane,
jednak stwierdzono, że brak prążków jest wynikiem błędu pomiaru.

Nieco później Einstein stwierdził, że doświadczenie prowadzi do stwierdzenia, iż należy
wybrać pomiędzy prawami Newtona i transformacją Galileusza a prawami Maxwella
i transformacją Lorentza. Wobec tego zaprezentował swoje postulaty -

postulaty Einsteina:

1.

Wszystkie prawa fizyki są takie same we wszystkich inercjalnych układach odniesienia.

2.

Prędkość światła w próżni jest taka sama we wszystkich inercjalnych układach
odniesienia i wynosi c ≈

3—10

8

m

/

s

.

Wynika z nich, że nie ma żadnego wyróżnionego inercjalnego układu odniesienia, a
określanie ruchu ma sens dopiero po obraniu konkretnego układu. Ponadto, czas nie jest
wielkością uniwersalną, czego konsekwencją są: względność równoczesności, dylatacja
czasu, skrócenie długości w kierunku ruchu i równoważność masy i energii.

Czasoprzestrze

ń

Einstein wprowadził czwarty wymiar i w ten sposób powstała czasoprzestrzeń. Współrzędne
geometryczne czasoprzestrzeni zapisujemy: [x,y,z,ct]. Wielkością niezmienniczą dla
czasoprzestrzeni jest interwał czasoprzestrzenny:

( ) ( ) ( )

( )

2

2

2

2

2

2

t

c

z

y

x

S

+

+

+

=

, S=const.


Lampa błyskowa w wagonie
Długości dróg dotarcia światła do obu ścian wagonu
są różne, bo wagon zdąży się przesunąć, zanim
światło dotrze do ścian. Efekt jest w zasadzie
niezauważalny w codzienności.

Z

1

Z

2

D

Ś

B

|

| u

|

| u

2

l

2

l

1

l

2

l

background image

19

Transformacja Lorentza

Transformacja prosta Transformacja odwrotna

u -

prędkość układów względem siebie (jeden

uznajemy za nieruchomy),

const

u

=

|

|

Transformacja

Galileusza

jest

szczególnym przypadkiem transformacji
Lorentza, gdyż dla u

«

c z powyższych

wzorów

otrzymujemy

wzory

transformacyjne Galileusza.

Dylatacja czasu

Mamy nieruchomy układ odniesienia OXY i poruszający

się względem niego z prędkością

const

u

=

|

|

wzdłuż osi OX

układ O’X’Y’. Z układem ruchomym są związane:
zwierciadło Z oraz źródło światła i detektor w punkcie O’.
W chwili początkowej układy nakładają się: t=t’=0.
Obliczamy czas przebycia przez światło drogi od źródła
do zwierciadła i spowrotem.

- Układ ruchomy:

=

=

'

2

2

'

ct

L

c

L

t

2

2

2

'

4

t

c

L

=

- Układ nieruchomy:

+

=

+

=

2

2

2

2

2

2

4

2

2

t

u

L

s

ut

L

s

2

2

2

2

2

4

t

u

L

t

c

+

=

Łącząc powyższe równania mamy:

(

)

'

1

'

'

'

'

'

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

c

u

t

t

u

c

t

c

t

t

c

u

c

t

t

c

t

u

t

c

t

u

t

c

t

c

=

=

=

=

+

=

'

,

1

'

2

2

t

t

c

u

t

t

>

=

Skrócenie Lorentza

Mamy nieruchomy układ odniesienia OXY i układ

poruszający się względem niego z prędkością

const

u

=

|

|

układ O’X’Y’. Z układem ruchomym są związane:
zwierciadło Z oraz źródło światła i detektor w punkcie O’.
W chwili początkowej układy nakładają się: t=t’=0.

2

2

2

2

2

1

'

'

'

'

1

'

'

c

u

c

x

u

t

t

z

z

y

y

c

u

ut

x

x

+

=

=

=

+

=

2

2

2

2

2

1

'

'

'

1

'

c

u

c

x

u

t

t

z

z

y

y

c

u

ut

x

x

=

=

=

=

x

x’

y

y’

|

| u

Z

L

ut

0

0’

x

x’

y

y’

|

| u

Z

0

0’

L

background image

20

x

x’

|

| u

0

0’
v

x’

=c

Obliczamy drogę przebytą przez światło od źródła do
zwierciadła i spowrotem.
- Układ ruchomy:

'

'

t

c

L

=

- Układ nieruchomy:

(

) (

)

u

c

t

u

c

t

L

=

+

=

2

1

,

2

1

t

t

t

+

=

Po wyprowadzeniu ostatecznie otrzymujemy związek:

'

,

1

'

2

2

L

L

c

u

L

L

<

=

Długość ciała ulega skróceniu, ale tylko w kierunku ruchu.
Dlatego też np. w sytuacji poniżej skróceniu ulega tylko składowa pozioma długości pręta.
Zmienia się również wartość kąta.





Transformacja Lorentza dla pr

ę

dko

ś

ci









Konsekwencją tego przekształcenia jest wzór na
relatywistyczne składanie prędkości:

2

'

1

'

c

v

u

u

v

v

x

x

x

+

+

=


Np:

Mamy ruch wzdłuż osi x. Prędkość światła jest w układzie
ruchomym równa c. Wyznaczmy prędkość światła w
układzie nieruchomym, jeżeli układ ruchomy porusza się
względem niego z prędkością u.

(

)

=

+

+

=

+

+

=

+

+

=

+

+

=

u

c

c

u

c

c

u

c

u

c

c

u

u

c

c

c

u

u

c

v

x

1

1

2

c

Prędkość okazała się być równa taka sama, pomimo ruchu układów względem siebie.
Dowodzi to słuszności drugiego postulatu Einsteina.


dt

dz

v

dt

dy

v

dt

dx

v

z

y

x

=

=

=

dt

dz

v

dt

dy

v

dt

dx

v

z

y

x

'

'

'

'

'

'

=

=

=





+

=





+

=

+

+

=

2

2

2

2

2

2

2

'

1

1

'

'

1

1

'

'

1

'

c

v

u

c

u

v

v

c

v

u

c

u

v

v

c

v

u

u

v

v

x

z

z

x

y

y

x

x

x

0

x’

x

y’

y

0’

φ

l’

|

| u

background image

21

Prawa mechaniki klasycznej prawdziwe tak

ż

e dla mechaniki relatywistycznej:


ale,

2

2

0

1

c

v

m

m

=

, co jest zauważalne tylko w mikroświecie.


Masa zmienia się wraz z prędkością. Zjawisko jest wykorzystywane w cyklotronie i betatronie.
W betatronie w odróżnieniu od cyklotronu następuje zmiana indukcji pola, poza tym
urządzenia są podobne (ich celem jest przyspieszanie cząstek). Promień toru cząstki zależy
od jej pędu, a skoro pęd zależy od masy, to masa wpływa na zwiększenie promienia toru.
Przy zwiększaniu prędkości rośnie masa ciała. Powoduje to zmniejszenie przyspieszenia,
przez co prędkość maleje i nigdy nie przekracza prędkości światła!

Równowa

ż

no

ść

masy i energii

º

Energia spoczynkowa:

2

0

0

c

m

E

=

º

Energia całkowita ciała w ruchu:

2

2

2

0

2

1

c

v

c

m

mc

E

=

=

º

Energia kinetyczna w relatywistyce:

2

0

2

2

2

0

2

0

2

1

c

m

c

v

c

m

c

m

mc

E

k

=

=





=

1

1

1

2

2

2

0

c

v

c

m

E

k

Jeżeli ostatnie równanie rozwiniemy w szereg, to dla

v

znacznie mniejszych od

c

otrzymamy:

2

2

0

v

m

E

k

º

W mechanice klasycznej mamy:

0

2

2m

p

E

k

=

;

v

m

p

=

i z mechaniki relatywistycznej:

2

2

0

1

c

v

m

m

=

.

Stąd otrzymujemy:

=

+

=

=

=

=

2

2

2

2

2

2

2

0

2

2

2

0

2

2

2

2

2

2

0

2

2

2

2

0

2

2

2

2

0

1

1

c

p

v

p

c

v

m

c

v

m

v

p

c

p

v

m

c

v

p

p

v

m

c

v

p

c

v

v

m

p

(

)

2

2

0

2

2

2

2

2

2

2

2

2

0

2

c

m

p

c

p

v

c

p

p

c

m

v

+

=

=

+

oraz

2

2

2

0

1

c

v

c

m

E

=

Dalej mamy:

+

=

+

=

+

+

=

+

=

c

m

c

m

p

c

m

c

m

p

c

m

c

m

c

m

p

p

c

m

p

c

m

c

m

p

p

c

m

E

0

2

2

0

2

2

0

2

2

0

2

0

2

0

2

2

0

2

2

2

2

0

2

2

0

2

2

0

2

2

2

0

1

2

2

0

2

c

m

p

c

E

+

=

Otrzymany wzór przedstawia

zale

ż

no

ść

energii całkowitej ciała od p

ę

du w mechanice

relatywistycznej

. Potwierdził on teorię Plancka głoszącą, że światło jest wiązką korpuskuł.

dt

p

d

F

v

m

p

m

F

a

=

=

=

r

background image

22

DUALIZM KORPUSKULARNO-FALOWY

Energia fotonu

Każdy foton niesie kwant energii (ale masa spoczynkowa fotonu wynosi 0, ponieważ nie
zaobserwowano nigdy nieruchomego fotonu).

c

p

E

f

=

, a ponadto:

λ

ν

c

h

h

E

f

=

=

=

λ

c

h

pc

c

h

h

p

ν

λ

=

=

Wzór wiąże cechę korpuskuł - pęd z cechą fal - długość (lub częstotliwość).


Wzór umożliwia obliczenie masy fotonu (w ruchu).

=

=

mc

h

p

λ

λ

c

h

m

=

Do

ś

wiadczenie Lebiediewa

Mamy odpompowany cylinder przykryty szklaną pokrywką (przepuszczającą światło). Jest
też wiatraczek z czterema kulistymi tarczami, od góry pokrytymi sadzą, a od spodu
powierzchnią lustrzaną. Światło leciała przez cylinder i obserwowano ruchy wiatraczka.
Dowodziło to, że fotony zderzały się z tarczami, a więc musiały
istnieć. Gdy trafiały na sadzę, były absorbowane i wiatraczek
słabo się poruszał. Gdy przepuszczano je z drugiej strony -
trafiały na powierzchnię lustrzaną i wiatraczek szybciej się
poruszał, bo otrzymywał większy pęd.

Do

ś

wiadczenie z lamp

ą

rt

ę

ciow

ą

i elektrometrem

Lampa rtęciowa oświetla elektrometr przez płytkę kwarcową, która zatrzymuje
promieniowanie ultrafioletowe. Gdy elektrometr jest naładowany dodatnio, to po usunięciu
płytki nic się nie dzieje. Jeżeli jest on naładowany ujemnie, wówczas następuje jego
rozładowanie. Miało miejsce zjawisko fofotelektryczne zewnętrzne.

Efekt fotoelektryczny zewn

ę

trzny

Zjawisko zostało odkryte przypadkowo. Lampę próżniową dwuelektrodową oświetlano
ultrafioletem, chcąc otrzymać promienie katodowe. Okazało się, że przez próżnię płynie
prąd. Stwierdzono, że w lampie pozostały gazy resztkowe i uznano to za błąd.

Zjawisko nie jest obserwowane dla każdej fali świetlnej - zachodzi w zależności od długości
fali.

Wielkość otrzymanego fotoprądu nie zależy bezpośrednio od energii, jaką fala przenosi,
ale od natężenia światła.

Einstein stwierdził, że pojedynczy foton o energii E

f

padając na metal ginie, a na jego

miejsce pojawia się również jeden elektron.

W metalach występują wolne elektrony, ale w temperaturze pokojowej mają zbyt małą
energię, aby wyrwać się z sieci krystalicznej - trzyma je energia wiązania. Dopiero
dodatkowa energia niesiona przez fotony daje im możliwość uwolnienia z metalu.

Równanie Einsteina-Millikana:

k

f

E

W

E

+

=

, gdzie W jest pracą wyjścia elektronu, równą co

do wartości energii wiązania elektronu w danym metalu, a E

k

jego energią kinetyczną. W

większości przypadków korzystamy ze wzoru klasycznego na energię kinetyczną:

2

2

0

v

m

E

k

=

,

z relatywistycznego (

2

0

2

c

m

mc

E

k

=

) w odosobnionych przypadkach.

Wyrwane elektrony poruszają się, dlatego obserwujemy fotoprąd.

absorpcja


∆p=p

f

odbicie


∆p=2p

f

background image

23

R

Cu

Granicą zjawiska fotoelektrycznego zewnętrznego jest określana następująco: minimalna
energia fotonu równa jest pracy wyjścia elektronu z metalu:

W

E

f

. Mówimy o granicznej

częstotliwości lub granicznej długości fali:

W

hc

h

gr

gr

=

=

λ

ν

. Dla

gr

ν

ν

<

, czy

gr

λ

λ

>

zjawisko nie

zachodzi - energia fotonu jest zbyt mała, by wyrwać elektron.

Zjawiska fotoelektrycznego zewnętrznego nie da się wytłumaczyć za pomocą teorii
falowej, więc dowodzi ono, iż światło jest wiązką korpuskuł.

Energia strumienia świetlnego

λ

hc

n

=

, gdzie n - liczba fotonów. Im większa liczba fotonów,

tym większe jest natężenie światła i większa jest energia przenoszona przez strumień
świetlny, a więc większe jest natężenie fotoprądu.


W podobnym czasie udowodniono, że światło ma naturę korpuskularną (poprzez efekt
fotoelektryczny zewnętrzny) oraz falową (Hertz potwierdził teorię Maxwella poprzez
doprowadzenie do interferencji i dyfrakcji długiej fali radiowej).

W zjawisku fotoelektrycznym zewnętrznym zaobserwowano, że przy danej długości fali, jeżeli
zwiększymy natężenie światła, to wzrasta liczba fotoelektronów. A ponieważ fala zawsze
niesie tę samą ilość energii (przy ustalonej długości), to trzeba uwzględnić, że światło jest
wiązką korpuskuł.

Jeżeli chcemy mieć metal naładowany powierzchniowo, musimy zabrać energię kinetyczną

wybitym elektronom, nie da się bowiem tak idealnie dobrać długości fali, aby

W

hc

=

λ

Fala świetlna (zwykle UV), pada na jedną z elektrod kondensatora.
Ustalamy tę elektrodę jaką dodatnią, wówczas elektron nie wylatuje i
zostaje na powierzchni metalu. Pomiędzy elektrodami występuje napięcie,

zwane napięciem hamowania.

h

k

eU

E

=

i w konsekwencji:

h

eU

W

hc

+

=

λ




Zad. Kulę miedzianą, umieszczoną w próżni, oświetlamy światłem o

gr

λ

λ

>

. Dana

jest również praca wyjścia elektronu z miedzi W oraz promień kuli R. Do jakiego
ładunku naładuje się kula?

Energia kinetyczna ma związek z potencjałem na powierzchni kuli:

eV

E

k

=

. Ponadto:

W

hc

E

k

=

λ

. A więc:

e

W

e

hc

V

W

hc

eV

=

=

λ

λ

. Dalej:

VR

Q

R

Q

V

0

0

4

4

1

πε

πε

=

=

.

Ostatecznie:

=

W

hc

e

R

Q

λ

πε

0

4

Odp:

=

W

hc

e

R

Q

λ

πε

0

4


Czasem możemy zaobserwować zjawisko wybijania elektronów z pyłu księżycowego -
widać charakterystyczną aureolę - „księżyc w lisiej czapie”.

Zjawisko fotoelektryczne zachodzi też w półprzewodnikach, ale ma nieco inny mechanizm.

ν

h

h

U

e

background image

24

Promieniowanie Roentgena

Było początkowo nazywane promieniowaniem X, ponieważ nie
wiedziano, czym naprawdę jest. Roentgen
chciał osiągnąć promieniowanie katodowe.
Wykorzystał

układ

nazywany

lampą

rentgenowską. Przyspieszał w niej elektrony
napięciem rzędu 10kV. Zaobserwował, że

występuje dodatkowe świecenie. Natężenie tego światła zmieniało
się w sposób ciągły w zależności od długości fali, ale
zaobserwowano też charakterystyczne piki (dopiero na wykresie).
Elektrony miały energię rzędu 10keV. Jeden elektronowolt to

energia, jaką uzyskuje jeden elektron przyspieszany napięciem wielkości 1V

J

eV

19

10

6

,

1

1

=

.

Uzyskane promieniowanie przenikało materię, jednak nie zaobserwowano żadnych zjawisk
charakterystycznych dla fal. Promieniowanie Roentgena jest czasem nazywane
promieniowaniem hamowania, bowiem elektrony rozpędzają się, a następnie zatrzymują na
antykatodzie i przekazują jej energię eU. Antykatoda uzyskując energię wysyła kwant

światła,

λ

ν

hc

h

eU

=

=

i

powstaje

charakterystyczne

widmo

promieniowania

rentgenowskiego. Dla tego widma można określić graniczne wartości częstotliwości i

długości fali:

gr

gr

c

λ

ν

=

. Charakterystyczne piki na wykresie natężenia promieniowania od

długości fali (oznaczane K i L) występują, gdy elektron posiada bardzo dużą energię i wnika
głęboko do materiału tworzącego antykatodę. Wówczas wybija elektron z głębi siatki
krystalicznej, powstaje tam puste miejsce, a elektron wracając do niego przechodzi z orbity
wyższej na niższą, co wywołuje emisję energii. Długość fali promieniowania rentgenowskiego
można oszacować następująco:

eU

hc

hc

eU

=

=

λ

λ

;

V

kV

U

4

10

10

=

=

;

C

e

19

10

6

,

1

=

;

s

m

c

8

10

3

=

;

Js

h

34

10

625

,

6

=

Å

1

10

10

10

6

,

1

10

3

10

625

,

6

10

4

19

8

34

=

=

m

V

C

s

m

Js

λ

- angstrem [engsztrem]


Nie udało się sztucznie otrzymać siatki
dyfrakcyjnej, która mogłaby załamywać
fale długości jednego angstrema. Taką
siatkę stworzyła jednak natura - jest to siatka
krystaliczna. Istotny w tym przypadku jest nie
kąt padania, a kąt dopełniający go do 90

º

,

tzw. kąt poślizgu.
Warunek dla siatki:

λ

θ

n

d

=

sin

2

Promienie

ugięte

na

krysztale

monochromatyczne.

Na

kliszy

otrzymujemy

charakterystyczne zaciemnienia. Taką kliszę
nazywamy laogramem. Na jej podstawie można
określić rodzaj struktury krystalicznej.



background image

25

Do

ś

wiadczenie Comptona

Compton chciał w swoim doświadczeniu
rozproszyć promienie rentgenowskie.








Dla Θ=0 zaobserwowano jeden pik. Dla
większych kątów obserwowano po dwa piki,
przy czym im większy kąt, tym większe było
przesunięcie

(przesunięcie

comptonowskie)

drugiego pika w kierunku fali długich. Wówczas
zmniejszała się energia fotonu i jest to logiczne,
ponieważ foton przekazywał część swojej
energii elektronowi. Tego zjawiska też nie dało
się wytłumaczyć za pomocą teorii falowej,
więc świadczy ono o korpuskularnej naturze
światła.

Na nieruchomy elektron pada foton i następuje zderzenie cząstek. Jest
to zderzenie doskonale sprężyste - zachowane są energia i pęd.

Przed zderzeniem Po zderzeniu
Foton:

c

p

c

h

E

f

f

=

=

λ

λ

h

p

f

=

Elektron:

2

0

0

c

m

E

=

0

=

e

p

Foton:

c

p

c

h

E

f

f

=

=

'

'

'

λ

'

'

λ

h

p

f

=

Elektron:

2

2

0

2

2

c

m

p

c

mc

E

e

+

=

=

...

=

e

p

Rozwiązując powyższy układ równań otrzymamy zależność:

'

λ

λ

λ

=

- wzór na

przesunięcie comptonowskie. Ponadto:

)

cos

1

(

0

θ

λ

=

c

m

h

, gdzie

c

m

h

0

jest comptonowską

długością fali. Maksymalna zmiana długości fali równa jest podwojonej wartości
comptonowskie długości fali.








długość fali

λ

Promieniowanie
rozproszone


Θ=0

Θ=

π

/

4



Θ=

π

/

2




Θ=

/

4

2

2

0

2

2

0

'

'

c

m

p

c

E

c

m

E

p

p

p

e

f

f

e

f

f

+

+

=

+

+

=

Θ

f

p

'

f

p

e

p

background image

26

FALOWA NATURA MATERII

Teoria budowy atomu

model Thomsona - „ciastko z rodzynkami” - atom jest dodatnio naładowaną masą z
umieszczonymi w niej naładowanymi ujemnie ładunkami; model dowodził obojętności
ładunku atomu, ale nie wyjaśniał np. widm gazów szlachetnych w wysokich
temperaturach.

model Rutherforda - w bardzo małej przestrzeni jest zbity ładunek dodatni i dookoła niego
krążą po orbitach kołowych ujemne ładunki - elektrony, które wypromieniowują energię;
teoretycznie powinny kiedyś stracić całą swoją energię i spaść do jądra, ale tak się nie
dzieje.

model Bohra - w oparciu o teorię Plancka Bohr stworzył własną teorię, której znaczącym
elementem są orbity bohrowskie - miejsca najbardziej prawdopodobnego umiejscowienia
elektronów.


Ś

wiecenie gazów

Gazy w pewnych warunkach wykazują świecenie. To świecenie widm opisał Rydberg,

wprowadzając wzór:

N

k

k

R

=

,

1

2

1

1

2

2

λ

, gdzie

R

=1,09677—10

7

m

-1

jest stałą Rydberga.

Powyższy wzór opisuje widmo w zakresie widzialnym - seria Balmera. Nieco później wzór

został zmodyfikowany przez Ritza:

N

k

n

k

n

R

=

,

,

1

1

1

2

2

λ

. Ten wzór opisuje widmo

dowolnej serii. Został on stworzony doświadczalnie na podstawie badań widma wodoru.

Postulaty Bohra:

I.

Elektron w atomie wodoru porusza się po orbicie kołowej i podlega prawom fizyki
klasycznej. Siłą dośrodkową jest siła oddziaływania coulombowskiego.

II.

Dozwolone są jedynie te orbity, z punktu widzenia mechaniki klasycznej, na których

elektron mam moment pędu skwantowany.

N

n

n

h

n

L

=

=

,

2

h

π

, gdzie

π

2

h

=

h

, a

n

jest

numerem orbity - pierwszą liczbą kwantową - liczbą główną.

III.

Elektron przy przejściu z jednej orbity na drugą może emitować bądź absorbować kwant

światła.

ν

h

E

E

k

n

=

, gdzie

E

n

- energia wiązania elektronu na

n

-tej orbicie, a

E

k

-

na

k

-tej.

Wyprowadzenie wzoru Rydberga z postulatów Bohra






prędkość elektronu na n-tej orbicie

nh

e

v

n

0

2

2

ε

=

π

=

πε

πε

=

+

=

π

=

=

×

=

π

=

πε

=

=

πε

2

4

:

)

2

(

)

1

(

4

2

:

)

3

(

2

2

:

)

2

(

4

4

1

:

)

1

(

2

0

2

0

2

2

2

0

2

2

2

0

h

n

mv

e

mv

r

e

mv

E

E

E

h

n

r

mv

v

m

p

p

r

L

h

n

L

mv

e

r

r

mv

r

e

e

n

n

n

n

pot

kin

n

n

n

n

n

n

n

n

n

n

n

n

background image

27


e

-

+Ze


promień n-tej orbity


energia
elektronu na
n-tej orbicie






Z postulatów Bohra otrzymujemy tę samą zależność, która wynikała z obserwacji
doświadczalnych (wzór Rydberga).

Postulaty Bohra dobrze opisywały widmo atomu wodoru. Podobnie było w
przypadku jonów wodoropodobnych. Są one atomami o liczbie atomowej Z,
z których usunięto Z-1 elektronów. Posiadają one różne ładunki jądra
wartości Z—e, ale zgodne są co do posiadania tylko jednego elektronu.

Wówczas:

2

2

2

0

4

2

8

h

n

e

mZ

E

n

ε

=

. W rozważaniach pomijamy siłę grawitacji, ponieważ jest ona

bardzo mała:

kg

m

kg

m

C

e

gdzie

r

m

m

G

F

r

e

F

p

e

n

p

e

G

e

27

31

19

2

2

0

2

10

6

,

1

,

10

1

,

9

,

10

6

,

1

:

;

;

4

=

=

=

=

=

πε

Klasyczna teoria Bohra została obalona, ale nie zaprzestano jej stosowania, ponieważ w
bardzo dobry sposób opisuje widma wodoru.

Teoria de Broglie’a i jego postulat

Louis de Broglie stwierdził, że materia jest falą. Postulat de Broglie’a:

=

=

λ

h

mv

p

mv

h

=

λ

„Fala materii o masie

m

, poruszającej się z prędkością

v

ma długość

mv

h

”.

Zależność ta jest wykorzystywana w mikroskopach elektronowych.
Fale materii są bardzo małe. Do pokazania ich dyfrakcji użyto kryształów. Dokonano tego
np. dla elektronu, jednak potrzebne były duże prędkości. Było to możliwe, ponieważ
elektrony oddziaływały z cząstkami wewnątrz sieci krystalicznej, a poza tym relatywistycznie
zmieniała się ich masa. Najpierw jednak udało się przeprowadzić doświadczenie z

neutronami, dla których:

v

v

7

27

34

10

4

10

67

,

1

10

625

,

6

=

λ

. Dla prędkości v =1000m/s otrzymano fale

długości rzędu 1Å, więc możliwe było ukazanie dyfrakcji.

Dualizm korpuskularno - falowy wprowadzony dla światła przez Plancka został później
przeniesiony na materię przez de Broglie’a.
- parametry falowe: długość

λ

, częstotliwość

ν

,

- parametry korpuskularne: pęd

p

, energia

E

.

Założenie leżące u podstaw mechaniki kwantowej postawił do Broglie twierdząc, że w
przyrodzie panuje symetria, więc skoro światło - fala jest w pewnym przypadku wiązką
cząstek, to podobnie materia w pewnych sytuacjach zachowuje się jak fala. Później
Schrödinger opisał funkcję falową.

ε

=

λ

ε

=

ε

ε

=

ν

=

ν

ε

ε

=

π

ε

πε

ε

=

ε

πε

=

2

2

2

2

0

4

2

2

2

2

0

4

2

2

2

0

4

2

2

2

0

4

2

2

2

0

4

2

2

2

0

4

2

2

2

0

0

2

2

2

2

0

4

2

2

2

0

4

0

2

1

1

8

1

1

8

8

8

:

)

4

(

4

8

4

4

2

:

)

3

(

4

4

n

k

h

me

hc

n

k

h

me

h

k

me

h

n

me

h

E

E

h

h

n

me

h

n

me

me

h

n

e

h

n

e

m

E

h

n

e

m

e

r

k

n

n

n

=

2

2

2

0

me

h

n

r

n

π

ε

2

2

2

0

4

8

h

n

me

E

n

ε

=

=

2

2

3

2

0

4

1

1

8

1

n

k

c

h

me

ε

λ

background image

28

Następnie Davisson i Germer doprowadzili do interferencji elektronów na sieci krystalicznej -
zaobserwowali na ekranie prążki interferencyjne, ale były one widoczne dopiero przy dużej
liczbie elektronów. Elektrony były przyspieszane napięciem U w polu elektrycznym, więc:



długość fali materii elektronu przyspieszanego napięciem

U

Jeżeli podstawimy wartości stałych (

h,m,e

), to otrzymamy:

U

2

10

9

λ

, długość takiej fali jest

bardzo mała, dlatego jej dyfrakcję interferencję obserwowano tylko w kryształach.

Sinusoidalna fala płaska

Dla fal wyróżniamy prędkość fazową oraz prędkość grupową. W myśl teorii de Broglie’a
cząstka jest paczką falową, a więc prędkość jej poruszania jest prędkością grupową.
Równanie fali płaskiej:

)

sin(

kx

t

A

=

ω

ζ

Charakteryzują ją dwie prędkości: fazowa i grupowa.

k

v

f

ω

=

;

dk

d

v

g

ω

=

. Prędkość grupowa -

prędkość przemieszczania się maksimum paczki falowej. Każde zaburzenie można uznać za
paczkę falową kilku fal sinusoidalnych.








Prędkość grupowa fali materii to prędkość korpuskuły -

v

v

g

=

.


Fale materii są zauważalne tylko w mikroświecie, ponieważ w makroświecie mają zbyt małe
długości.

Funkcja falowa

- wielkość fizyczna będąca w danym miejscu pola falowego i w danej chwili

miarą zaburzenia równowagi elementów.

Równanie fali płaskiej:

)

sin(

kx

t

A

=

ω

ζ

. Korzystamy również ze wzoru Eulera:

x

i

x

e

ix

sin

cos

+

=

.

Rozwiązanie równania fali płaskiej zaproponował uczeń Schrödingera - Max de Born, który,

korzystając z analogii do fali mechanicznej, zapisał funkcję falową w postaci:

(

)

t

kx

i

e

ω

ψ

ψ

=

0

.

Sens fizyczny ma dopiero iloczyn funkcji falowej i jej sprzężenia i jest on równy gęstości

prawdopodobieństwa wystąpienia cząstki w pewnym elemencie w przestrzeni

2

*

ψ

ψ

ψ

=

.

Prawdopodobieństwo wystąpienia cząstki w elemencie objętości

dV

określa się

następująco:

dV

dP

2

ψ

=

. Ponadto oczywista jest zależność:

1

2

=

dV

ψ

, która świadczy o

tym, że cząstka zawsze znajduje się w jakimś punkcie przestrzeni.

=

=

=

=

=

=

=

p

h

h

mv

p

meU

p

eU

m

p

eU

mv

E

k

λ

λ

2

2

2

1

2

2

meU

h

2

=

λ

v

m

mv

m

p

v

m

p

E

dp

dE

dk

d

dp

h

dk

p

h

k

p

h

k

dE

h

d

E

h

h

h

E

g

=

=

=

=

=

=

=

=

=

=

=

=

=

2

2

2

:

)

2

(

)

1

(

2

2

2

:

)

2

(

2

2

2

:

)

1

(

2

ω

π

π

λ

λ

π

π

ω

π

ω

π

ω

ν

∆x

x

v

g

background image

29

Zasada nieokre

ś

lono

ś

ci (nieoznaczono

ś

ci) Heisenberga:

„jest rzeczą niemożliwą

równoczesne i dokładne zmierzenie pary wielkości fizycznych takich, jak położenie i pęd
oraz energia i czas”.

π

π

π

2

2

2

h

p

z

h

p

y

h

p

x

z

y

x

Przyjmijmy ruch wzdłuż osi 0X:

π

2

h

p

x

x

.

Ponadto:

x

x

x

x

x

x

x

x

x

v

E

p

p

v

E

mv

p

p

m

p

E

m

p

E

=

=

=

=

=

2

2

2

2

Podstawiamy do nierówności:

π

2

h

E

v

x

x

π

2

h

E

t

(druga postać zasady nieoznaczoności).

Zasada ujawnia się np. w przypadku elektronu: można określić jego energię na danej
orbicie, ale wtedy jest trudno dokładnie zmierzyć czas jego życia.
Konsekwencje zasady nieoznaczoności są zauważalne w mikroświecie, w makroświecie nie
da się ich zaobserwować.

Równanie Schrödingera

- równanie umożliwiające zapisanie funkcji falowej, potrzebnej do

określenia prawdopodobieństwa występowania cząstki w przestrzeni. Bazujemy w nim na

równaniu falowym.

dV

dP

2

ψ

=

t

h

i

V

z

y

x

m

h

=

+





+

+

ψ

π

ψ

ψ

ψ

ψ

π

2

8

2

2

2

2

2

2

2

2

, gdzie

V

jest energią potencjalną cząstki.


Rozwiązując powyższe równanie możemy znaleźć orbity w atomach. Z tego równania
wykazano, że orbity bohrowskie są miejscem najbardziej prawdopodobnego występowania
elektronów.

Równanie Schrödingera jest równaniem różniczkowym stopnia drugiego. Jest to równanie
operatorowe.

t

h

i

V

z

y

x

m

h

=

+





+

+

ψ

π

ψ

π

2

8

2

2

2

2

2

2

2

2

, gdzie:





+

+

2

2

2

2

2

2

2

2

8

z

y

x

m

h

π

jest operatorem energii

kinetycznej, a V operatorem energii potencjalnej.
Rozwiązując równanie Schrödingera otrzymujemy energie własne na poszczególnych
orbitach oraz postać funkcji falowej. Funkcja falowa opisuje stan cząsteczki. Funkcję falową
możemy rozdzielić na zależność przestrzenną i zależność czasową (która jest
eksponencjalna).

(

) (

)

h

iEt

e

z

y

x

t

z

y

x

=

,

,

,

,

,

ψ

ψ

,

Jeżeli rozważymy ruch wzdłuż jednej z osi, np osi 0X, to zapisujemy jednowymiarowe

równanie stacjonarne Schrödingera:

ψ

ψ

ψ

π

E

V

x

m

h

=

+

2

2

2

2

8

π

2

h

=

h

background image

30

Własno

ś

ci funkcji falowej:

1

*

=

dV

ψ

ψ

- cząstka znajduje się gdzieś w przestrzeni,

skończona - cząstka ma skończone wymiary,

ciągła - cząstka jest niepodzielna,

jednoznaczna - cząstka jest jedna.

Studnia (jama) potencjału

Mamy studnię potencjału o szerokości a. W obszarach 1 i 3
potencjał jest nieskończony, więc funkcja falowa jest zerowa
- tam nie ma cząsteczki. Cząstka ma skończony potencjał
tylko w obszarze 2 i tylko tam może się znajdować (wewnątrz
studni).

=

+

=

ψ

ψ

ψ

π

E

V

x

m

h

V

2

2

2

2

8

0

0

8

2

2

2

2

=

+

ψ

π

ψ

h

mE

x

Rozwiązanie ostatniego równania:

kx

A

kx

A

cos

sin

2

1

+

=

ψ

, gdzie

2

2

2

8

h

E

m

k

π

=

, a

A1,A2

- stałe.

Widać ze wzoru, iż funkcja falowa ma charakter oscylacyjny.

Energia cząstki wewnątrz studni jest skwantowana:

2

2

2

2

2

ma

n

E

n

h

π

=

Energia cząstki na poszczególnych poziomach energetycznych:













Oscylator kwantowy

Może nim być np. jon drgający w sieci krystalicznej.
Poziomy energetyczne są tutaj równoodległe (inaczej
niż w poprzednim przypadku).
W makroświecie nie obserwujemy kwantyzacji energii,
różnice są zbyt małe do zaobserwowania. Inaczej jest
w mikroświecie - wielkości są większego rzędu i można
je zaobserwować.

Równanie Schrödingera ma też zastosowanie w atomach wodoropodobnych. Wtedy jednak
należy przejść na współrzędne sferyczne i równanie przyjmuje bardzo skomplikowaną
postać. Rozwiązując je dochodzimy do wniosku, że orbity bohrowskie są miejscami


V=∞ V=0 V=∞
ψ=0 ψ≠0 ψ=0

0

a

1

2

3

n=1

n=2



n=3

Energia

)

(x

ψ

2

)

(x

ψ

V(x)

x

E

n

E

n-1

2

2

1

kx

V

=

background image

31

najbardziej prawdopodobnego występowania elektronów w atomie. Bohr stwierdził, że
elektrony mogą zajmować tylko określone miejsca w przestrzeni wokół jądra atomowego (tj.
orbity bohrowskie). Określił też liczby kwantowe:
- n - główna liczba kwantowa, numer orbity,
- l - orbitalna liczba kwantowa,
- m - magnetyczna liczba kwantowa, informuje o własnościach magnetycznych.

Liczby kwantowe są związane z równaniem Schrödingera. Ważny jest tu wzór:

2

n

E

E

n

=

, gdzie

E

jest energią w stanie podstawowym.

Zakres Pauliego:

„w danym stanie elektrycznym nie mogą się znaleźć cząstki o tych samych

liczbach kwantowych”. Aby to założenie było rzeczywiście spełnione, wprowadzono
czwartą liczbę kwantową - spin (liczbę spinową), czyli moment własny. Dla wodoru w stanie
podstawowym wykonano doświadczenie, polegające na przepuszczeniu wiązki elektronów
w polu magnetycznym. Zaobserwowano wówczas efekt Zeemana, na ekranie pojawiły się
dwa punkty (a nie jeden), co oznaczałoby, że elektron „ma dwie energie”. (Podobny efekt
daje przepuszczenie wiązki przez pole elektryczne - obserwujemy
efekt Starka). Okazało się, że obie wartości były takie same, ale
jedna z nich była ujemna, co jest wywołane faktem, iż spin jest
wektorem (znak wynika ze zwrotu). Na danym poziomie
energetycznym mogą występować dwa elektrony - o tych samych
liczbach n, l, m, ale o przeciwnych spinach.

Wszystkie cząstki o spinie s=½ to fermiony - podlegają one statystyce Fermiego - Diraca.
Z kolei cząstki o spinie całkowitym (np. fotony) nazywamy bozonami - podlegają one
statystyce Bosego - Einsteina.

























s=½
n, l, m
s=˗½

background image

32

FIZYKA JĄDROWA

Atomy mają rozmiary rzędu jednego angstrema.

J

ą

dro atomowe

Ma ono rozmiary rzędu 10

-15

m, jest więc skupione na obszarze znacznie mniejszym niż atom.

Ma ładunek elektryczny dodatni. Wyróżniamy jądra trwałe (stabilne) oraz nietrwałe
(niestabilne) - promieniotwórcze. Każde jądro składa się z protonów i neutronów:
- proton:

kg

m

p

27

10

672

,

1

=

,

C

q

p

27

10

6

,

1

=

,

- neutron:

kg

m

n

27

10

674

,

1

=

,

C

q

n

0

=

.

Jądro bywa nazywane nuklidem, symboliczne oznaczenie:

A

- liczba masowa, równa liczbie nukleonów (neutronów i protonów)

Z

- liczba atomowa (porządkowa), równa liczbie protonów

A-Z

- liczba neutronów

Jądra danego pierwiastka mogą się różnić liczbą neutronów i wtedy są izotopami (

Z

1

=Z

2

,

A

1

≠A

2

). Najbardziej znane izotopy (wodoru) wykryto w spektrometrze masowym:

H

1
1

H

2

1

H

3

1

(prot, deuter i tryt). Nuklidy o tej samej liczbie A to izobary (Z

1

≠Z

2

, A

1

=A

2

). Z kolei,

jeżeli jądra mają tę samą liczbę neutronów są izotonami (

A

1

- Z

1

= A

2

- Z

2

).

Średni promień jądra pierwiastka:

(

)

3

1

15

10

2

,

1

A

R

=

, gdzie

A

- liczba masowa.


Gęstość materii jądrowej
(jądro jest w przybliżeniu sferą):

(

)

=

=

A

m

A

R

m

n

j

3

15

3

10

2

,

1

3

4

3

4

π

π

ρ

(

)

3

15

10

2

,

1

4

3

=

π

ρ

n

m

3

17

10

3

,

2

m

kg

=

ρ

(najbardziej upakowana materia)

Defekt masy

Okazuje się, że

j

n

p

m

m

Z

A

m

Z

+

)

(

. Ma to związek z tzw. defektem masy. Masa „ginie”, a

tak naprawdę zostaje zamieniona na energię wiązania jądra atomowego.

2

c

m

E

w

=

Wykres nie jest ciągły, można dostrzec „piki”
dla

pierwiastków

związanych

z

liczbami

„magicznymi”, tj. wielokrotnościami liczby 4.









Siły j

ą

drowe

Mają ogromne wartości w porównaniu z innymi rodzajami sił (elektrostatycznymi,
magnetycznymi czy grawitacyjnymi).

X

A

Z

background image

33

Własno

ś

ci sił j

ą

drowych:

nie zależą od ładunku elektrycznego (trzymają zarówno protony jak i
neutrony),

są krótkozasięgowe (zasięg rzędu 10

-14

- 10

-15

m),

mają własność wysycania, tzn. że każdy nukleon oddziałuje z ograniczoną
liczbą najbliższych sąsiednich nukleonów:

nie są siłami centralnymi tzn. że nie działają wzdłuż prostych łączących
środki oddziałujących nukleonów.

cząstką elementarną oddziaływania sił jądrowych są mezony (π

ο

, π

i π

+

), masa mezonów

równa jest 1/7 masy protonu lub neutronu.


Modele struktury jądra atomowego
Najbardziej charakterystyczne modele to model kroplowy i model powłokowy.

Model kroplowy

- przyrównuje jądro atomowe do kropli cieczy.

nukleony jak cząsteczki cieczy oddziałują tylko z najbliższymi sąsiadami,

emisję cząstki z jądra można porównać z wyparowaniem cząsteczki z cieczy,

ruch nukleonów w jądrze może być analogiczny do ruchu termicznego cząsteczek w
cieczy.

Na podstawie modelu kroplowego opracowano wzór łączący energię wiązania z liczbą
atomową i masową - półempiryczny wzór Bethego-Weizsaekera.

(

)

4

3

5

2

4

3

1

2

3

3

2

2

1

2

±

=

A

a

A

Z

A

a

A

Z

a

A

a

A

a

E

w

, gdzie

A

- liczba masowa,

Z

- liczba atomowa.

Model kroplowy lepiej sprawdza się w przypadku jąder nieparzystych:













Model powłokowy

- powstał, aby wyjaśnić istnienie liczb magicznych.

Model zakłada, że nukleony znajdują się na orbitach scharakteryzowanych przez określone
liczby kwantowe. Nukleony obsadzają poszczególne poziomy zgodnie z zasadą Pauliego,
przy czym protony i neutrony zapełniają swoje oddzielne poziomy. Energia i kolejność
poziomów jakie zajmują poszczególne nukleony, zależy od przyjętego potencjału. Jeżeli
przyjmiemy, że potencjał jest tylko funkcją odległości od środka masy jądra i posiada
symetrię sferyczną, to orbity zajmowane przez nukleony są rozwiązaniami równania

background image

34

Schrödingera:

( )

ψ

ψ

E

r

V

m

h

=

+

2

. Kształt potencjału musi spełniać dwa podstawowe

warunki:

nie sięga daleko poza jądro (siły jądrowe są krótkiego zasięgu),

nie zmienia się znacznie wewnątrz jądra i nie ma osobliwości w środku jądra.

Kształt potencjału przyjmowano jako oscylator harmoniczny, jamę potencjału nieskończenie
głębokiego, studnię prostokątną z wklęsłym dnem.

Studnie potencjału protonów i neutronów:

Promieniotwórczo

ść

Wyróżniamy dwa rodzaje promieniotwórczości: naturalną i sztuczną.
Bequerel przeprowadził doświadczenia z różnymi pierwiastkami. Niektóre z nich
powodowały zaczernienie kliszy fotograficznej, inne - nie. Stwierdził, że istnieje pewne
promieniowanie i chciał je zbadać, sprawdzając jak oddziałuje na nie pole magnetyczne i
elektryczne.

Rodzaje promieniowania

promieniowanie

α

- emisja jądra helu He

2+

,

promieniowanie

β

- emisja elektronu e

-

lub pozytonu e

+

,

promieniowanie

γ

- promieniowanie elektromagnetyczne.

Rozpad

α

γ

+

+

+

Q

He

Y

X

A
Z

A

Z

4

2

4

2

Widmo promieniowania

α


Cząstka

α

w studni potencjału

Cząstka

α

w myśl mechaniki klasycznej nie opuści studni

potencjału, jeżeli ma energię mniejszą od energii wiązania
cząstki

α

(ma zbyt niski poziom energetyczny) - odbije się od

jej ściany. Prawdopodobieństwo odbicia jest równe 1. Dla
mechaniki kwantowej prawdopodobieństwo to mniejsze od 1
i cząstka może opuścić studnię (efekt tunelowy).



n






E

α

E

E

E

w

α





E

α

2r

j

α

background image

35

Rozpad

β

- rozpad

β

-

- emisja elektronu,

- rozpad

β

+

- emisja pozytonu.



Rozpad

β

-

γ

+

+

+

+

Q

e

Y

X

A

Z

A

Z

1

e

e

p

n

ν

~

+

+

(dla zachowania spinu powstaje antyneutrino
elektronowe - cząstka o masie zaniedbywanej,
ładunku zerowym a spinie 1/2)

Rozpad

β

+

γ

+

+

+

+

Q

e

Y

X

A

Z

A

Z

1

e

e

n

p

ν

+

+

+

(dla

zachowania

spinu

powstaje

neutrino

elektronowe - cząstka o masie zaniedbywanej,
ładunku zerowym a spinie -1/2)

Model powłokowy a rozpady

Model powłokowy tłumaczy rozpady. Protony i neutrony zapełniają niezależnie swoje
poziomy energetyczne.

Na

początku

mamy

jądro

nieparzysto

-

nieparzyste,

bardzo nietrwałe.






Następuje rozpad β

-

- neutron

przechodzi w proton i mamy
jądro parzysto - parzyste.






Może też nastąpić rozpad β

+

-

proton przechodzi w neutron i
mamy jądro parzysto - parzyste.






Przemiana

γ

Poprzez emisję promieniowania elektromagnetycznego

γ

jądro przechodzi ze stanu wzbudzonego do stanu

podstawowego.

Promieniotwórczo

ść

naturalna

- zjawisko samorzutnego rozpadu jąder połączone z emisją

promieniowania jonizującego (cząstek α, β lub promieniowania γ).

Promieniowanie jonizuj

ą

ce

- promieniowanie, które przekazuje swoją energię atomom

otaczającego go środowiska powodując ich jonizację - zostają oderwane elektrony.

α - strumień dodatnio naładowanych jąder helu. Ma zasięg kilku cm.

Powoduje silną bezpośrednią jonizację. Posiada widmo liniowe.
Można je zatrzymać zwykłą kartką papieru lub folią. Jest bardzo
niebezpieczne dla zdrowia.

β - emisja strumienia elektronów o prędkości bliskiej prędkości światła w

próżni

-

podlega

mechanice

einsteinowskiej.

Powoduje

bezpośrednią jonizację ośrodka. Posiada widmo ciągłe. Zasięg do
kilkudziesięciu cm, w zależności od przenoszonej przez elektrony
energii. Daje się ekranować warstwą ok. 10 kartek papieru, szkłem
organicznym, aluminium lub folią miedzianą.

γ - bardzo przenikliwe promieniowanie elektromagnetyczne. Powoduje

pośrednią jonizację ośrodka. Zasięg w zależności od przenoszonej
energii i gęstości ośrodka, do kilkunastu m. Ekranuje się cegłami
ołowianymi, szkłem ołowianym, żeliwem.

n



E

p

n

p

n

p

n

Widmo
promieniowania

β

background image

36

Izotopy promieniotwórcze

- są to pierwiastki, których jądra atomów są niestabilne i

samorzutnie ulegają przemianie promieniotwórczej. W przyrodzie występuje ich ok. 40,
sztucznie otrzymano ok. 9000 radionuklidów.

Prawo rozpadu promieniotwórczego

(Bazujemy na statystyce, mamy do czynienia z prawdopodobieństwem rozpadu).

N

0

- początkowa liczba jąder pierwiastka promieniotwórczego.

Ważymy próbkę, znając rodzaj pierwiastka określamy liczbę
moli w próbce, mnożymy ją przez stałą Avogadro i wtedy
mamy liczbę atomów - a więc i liczbę jąder.

dN - liczba jąder, które uległy rozpadowi
N - liczba jąder pozostała po czasie dt
λ -
stała rozpadu promieniotwórczego, jest charakterystyczną

wielkością dla pierwiastka (każdy ma inną); [λ]=

1

/

s


Minus oznacza ubywanie jąder.


Ze wzoru wynika, iż zanik jąder jest eksponencjalny

Czas połowicznego zaniku (rozpadu)









Ś

redni czas

ż

ycia

Wartość średnia dla f=f(x):



Średni czas życia jąder atomu pierwiastka promieniotwórczego jest
odwrotnością stałej rozpadu.



Aktywno

ść

promieniotwórcza

- jest to liczba rozpadów w jednostce czasu.

dt

dN

A

=

[ ]

Bq

A

=

(bekerel)

Przykłady źródeł promieniowania Przykłady okresów połowicznego zaniku








t

t

N

N

t

N

N

e

N

N

t

N

N

t

N

N

t

N

dt

N

dN

Ndt

dN

N

dN

λ

λ

λ

λ

λ

λ

=

=

=

=

=

=

0

0

0

0

0

ln

ln

ln

ln

~

0

0

t

e

N

N

λ

=

0

2

1

0

0

0

2

1

2

1

2

1

T

e

N

N

N

N

T

t

λ

=

=

=

λ

2

ln

2

1

=

T

( )

=

=

=

=

=

λ

λ

λ

λ

λ

λ

1

...

0

0

0

0

0

0

0

dt

e

dt

e

t

dt

e

N

dt

e

N

t

t

e

N

N

t

t

t

t

t

λ

1

=

t

=

=

2

1

2

ln

2

1

2

1

T

e

T

λ

λ

=

0

0

)

(

)

(

dx

x

f

dx

x

xf

x

background image

37

Datowanie węglem
Metoda określania wieku, np. skał, wykorzystująca izotop

14

C oraz jego okres połowicznego

zaniku. Metoda jest dość skomplikowana, ponieważ trzeba uwzględnić nie tylko zanik jąder,
ale także możliwość jednoczesnego zwiększania się ich liczby.

Szeregi promieniotwórcze


Detektory promieniowania

- urządzenia służące do wykrywania promieniowania. Przykłady:

komora jonizująca,

liczniki scyntylacyjne - wykorzystują fakt, iż atom przechodząc ze stanu wzbudzonego do
podstawowego emituje błyski związane z wydzielaniem energii przy przejściu elektronu z
powłoki wyższej na niższą,

klisza aparatu - zaczernia się pod wpływem promieniowania,

komora Czerenkowa - służy do wykrywania promieniowania

β

; jeżeli prędkość światła w

danym ośrodku (

n

c

v

=

) jest mniejsza niż prędkość elektronu (

v

v

e

>

), to elektron wysyła

charakterystyczne promieniowanie (promieniowanie Czerenkowa),

licznik Geigera-Müllera - kondensator w postaci cylindra; jedną okładkę stanowi walec,

drugą drucik wewnątrz walca; w walcu znajduje się rozrzedzony gaz; układ
jest podłączony do źródła napięcia (ale niezbyt dużego); jeżeli na licznik
pada promieniowanie, to z cząsteczki gazu zostaje wybity elektron i
powstaje jon; jon i elektron dążą do okładek, co obserwujemy poprzez
zmianę ładunku na okładkach; zmiana ładunku jest proporcjonalna do
liczby

jonów

i

elektronów,

dzięki

czemu

można

obliczyć

ilość

promieniowania.

Pomiary promieniowania

Przy pomiarach promieniowania należy uwzględnić tzw. promieniowanie tła. Jest to
zewnętrzne promieniowanie, którego udziału nie można skutecznie wykluczyć, np.
promieniowanie kosmiczne, albo z Czarnobyla. W badaniach, dla ochrony zdrowia, stosuje
się specjalne osłony.

Na osłonę o grubości d pada promieniowanie I

0

. Rozpatrujemy

element o grubości dx, na który pada promieniowanie I.





dx

I

0

I

d

I

I-dI

background image

38




Minus oznacza pomniejszenie promieniowania.

µ - liniowy współczynnik absorpcji; jest on charakterystyczny dla

danego materiału (każdy ma inny); [µ]=m

-1







Przy przechodzeniu przez warstwę zanik promieniowania jest eksponencjalny.

Zjawiska osłabiaj

ą

ce promieniowanie:

efekt fotoelektryczny zewnętrzny

efekt Comptona

kreacja par pozyton-elektron - aby zaszło to zjawisko, kwanty promieniowania γ muszą
mieć dużą energię (

MeV

E

f

02

,

1

>

), ponadto jądro pierwiastka musi być dosyć ciężkie.




























d

d

I

I

d

I

I

e

I

I

d

I

I

d

I

I

x

I

dx

I

dI

dx

I

dI

Idx

dI

Idx

dI

µ

µ

µ

µ

µ

µ

µ

=

=

=

=

=

=

=

0

0

0

0

0

ln

ln

ln

ln

~

0

0

d

e

I

I

µ

=

0

background image

39



















































background image

40




















































Wyszukiwarka

Podobne podstrony:
lab 13, Notatki, FIZYKA, SEMESTR II, laborki, lab
Lab 28, Notatki, FIZYKA, SEMESTR II, laborki, lab
Lab 15, Notatki, FIZYKA, SEMESTR II, laborki, lab
M07 - sprawozdanie-ewela, Notatki, FIZYKA, SEMESTR II, laborki, laborki fizyka II sem - ewel+jarecki
21 nasza, Notatki, FIZYKA, SEMESTR II, laborki, lab
Lab 31, Notatki, FIZYKA, SEMESTR II, laborki, lab
Lab 9, Notatki, FIZYKA, SEMESTR II, laborki, lab
lab 21, Notatki, FIZYKA, SEMESTR II, laborki, lab
Lab fizyki, Notatki, FIZYKA, SEMESTR II, laborki, lab
12, Notatki, FIZYKA, SEMESTR II, laborki, laborki fizyka II sem - ewel+jarecki, PIERDOŁY 12
IV WYNIKI TEORETYCZNE, Notatki, FIZYKA, SEMESTR II, laborki, laborki fizyka II sem - ewel+jarecki, P
Lab 12, Notatki, FIZYKA, SEMESTR II, laborki, lab
1231231231231, Notatki, FIZYKA, SEMESTR II, laborki, laborki fizyka II sem - ewel+jarecki, pierdoły
Twierdzenie Steinera, Notatki, FIZYKA, SEMESTR II, laborki, laborki fizyka II sem - ewel+jarecki, pi
Fizyka semestr II
Zadania-lista4, POLITECHNIKA WROCŁAWSKA (2009), Semestr II, Fizyka 2
Lepkość-sciaga, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,

więcej podobnych podstron