Wyrażenia algebraiczne
Zestaw 2
1
Zadanie 1. Dziedziną wyrażenia wymiernego
2
3
2
4
2
4
8
x
x
x
x
−
+
−
−
jest:
A.
{
}
\ 1, 2, 4, 8
− −
R
B.
{ }
\ 2
R
C.
{
}
\
2, 2
−
R
D. R
Zadanie 2
. Wielomiany
( )
2
2
(
2)
P x
x
=
−
i
( )
4
3
2
(
5) +
4
Q x
x
a
x
bx
=
+
+
+ są równe dla:
A. 0,
4
a
b
=
=
B.
5,
4
a
b
= −
= − C. 0,
4
a
b
=
= − D. 5,
4
a
b
= −
=
Zadanie 3
. Wartość liczbowa wyrażenia
2
2
( 2 )
(
2 )
x
y
x
y
+
− −
dla
2
x
=
,
2
y
= −
wynosi:
A.
20
B.
–16
C.
16
D.
–20
Zadanie 4
. Po uproszczeniu wyrażenia
2
2
3
3
3
3
x
x
x
x
⎛
⎞
⎛
⎞
+
−
−
⎜
⎟
⎜
⎟
⎝
⎠
⎝
⎠
,
0
x
≠ otrzymano
A.
4
B.
3
C.
x
D. 3x
Zadanie 5
. Wyrażenie
(
) (
)(
) (
)
2
2
3
2
3
3
3
x
x
x
x
−
−
−
+
+
+
jest równe:
A.
6
B.
2
4
12
x
+
C.
12
D.
0
Zadanie 6
. Warunki
( )
0
1
W
= i
( )
1
0
W
− = spełnia wielomian:
A.
( )
4
3
2
2
3
1
W x
x
x
x
x
= − −
+
−
+
B.
( )
4
3
2
2
3
2
W x
x
x
x
x
= − +
−
+
+
C.
( )
4
3
2
2
3
1
W x
x
x
x
x
= − +
−
−
+
D.
( )
4
3
2
2
3
1
W x
x
x
x
x
= − −
+
−
+
Zadanie 7
. Dziedziną funkcji
2
2
3
4
x
x
y
x
+
=
−
jest zbiór:
A.
{
}
\
3, 0
−
R
B.
{
}
\
2, 2
−
R
C.
{
}
\
3, 2, 0, 2
− −
R
D.
{ }
\ 2
R
Zadanie 8
. Wyrażenie
2
2
(2
3)
(2
3)
a
a
−
−
+
po przekształceniu ma postać:
A. 18
B. 24a
−
C. 0
D. –18
Zadanie 9
. Uproszczoną postacią wielomianu
( )
2
(2
3)(4
9)(2
3)
W x
x
x
x
=
−
+
+ jest:
A.
4
16
81
x
+
B.
4
16
81
x
−
C.
2
2
(4
9)
x
+
D.
2
2
(4
9)
x
−
Zadanie 10
. Wynikiem działania
2
2
4(
2)
4(
4)
x
x
−
−
+
jest wyrażenie:
A.
2
8x
B. 16
32
x
−
+
C.
16x
−
D.
0
Zadanie 11
. Wielomian
( )
4
3
2
4
26
12
W x
x
x
x
= −
+
−
po rozłożeniu na czynniki może mieć postać:
A.
2
2 (
6)(2
1)
x x
x
+
−
B.
2
2 (
6)(2
1)
x x
x
−
−
−
C.
2
2 (
6)(2
1)
x x
x
−
+
+
D.
2
2 (
6)(2
1)
x x
x
−
+
Zadanie 12
. Wielomiany
( )
(
)
4
3
2
3
16
Q x
x
a
x
bx
=
+
+
+
+
oraz
( )
4
2
8
16
P x
x
x
=
−
+
są równe dla:
A. 0,
8
a
b
=
= −
B.
3,
8
a
b
= −
= C.
0,
8
a
b
=
=
D.
3,
8
a
b
= −
= −
Zadanie 13
. Rozkład wielomianu
( )
2
2
(
4)( +5
6)
G x
x
x
x
=
−
+
na czynniki jest następujący:
A.
( )
2
(
2) (
2)(
3)
G x
x
x
x
=
−
+
+ B.
( )
2
(
2) (
2)(
3)
G x
x
x
x
=
−
+
−
C.
( )
2
(
2) (
2)(
3)
G x
x
x
x
=
+
−
+ D.
( )
2
(
2) (
2)(
3)
G x
x
x
x
=
+
−
−
Zadanie 14
. Dziedziną funkcji
( )
(
)
2
2
4
1
x
f x
x x
−
=
+
jest zbiór:
A.
{
}
\
1, 0, 1
−
R
B.
{ }
\ 0
R
C.
{
}
\
2, 0, 2
−
R
D.
{
}
\
1, 0
−
R
Wyrażenia algebraiczne
Zestaw 2
2
Zadanie 15
. Dane są wielomiany
( )
2
8
4,
( )
2
1
W x
x
P x
x
x
= − +
=
+
−
oraz
( )
3
5
4
Q x
x
x
=
− + . Wielomian
( ) ( )
(
)
1
( )
4
W x
P x
Q x
−
można zapisać w postaci:
A.
4
3
2
10
7
5
13
5
x
x
x
x
−
+
−
−
B.
4
3
2
10
7
5 +13
5
x
x
x
x
−
−
−
C.
4
3
2
10
7
5
13
5
x
x
x
x
−
+
+
+
D.
4
3
2
10
7
5
13
5
x
x
x
x
+
−
+
−
Zadanie 16
. Wartość wyrażenia
2
3
1
1
x
x
−
−
dla
2
x
= − jest równa:
A.
1
2
B.
1
3
C.
1
3
−
D.
1
2
−
Zadanie 17
. Dla dowolnych liczb rzeczywistych a, b prawdziwa jest równość:
A.
(
) (
)
2
2
2
a
b
a b
ab
+
−
−
=
B.
(
) (
)
2
2
4
a
b
a b
ab
+
−
−
= −
C.
(
) (
)
2
2
0
a
b
a b
+
−
−
=
D.
2
2
(
)
(
) = 4
a
b
a b
ab
+
− −
Zadanie 18
. Wśród poniższych par liczb
(
)
,
x y wskaż tę, która spełnia równość
2 1
x
y
=
+ :
A.
2 2 1,
2
x
y
=
+
= B. 1,
2 1
x
y
=
=
− C.
2 2,
2
x
y
=
+
=
D.
2,
2 1
x
y
=
=
−
Zadanie 19
. Wartość wyrażenia
2
2
1 2
1
x
x
x
x
+
−
+
−
dla
3
x
= jest równa:
A. 4
B. 8
C. 12
D. 10
Zadanie 20
. Wielomian
( )
2
4
5
W x
x
x
=
−
po rozłożeniu na czynniki może mieć postać:
A.
(
)(
)
2
5
5
x
x
x
x x
−
+
B.
(
)(
)
2
1
5
1
5
x
x
x
−
+
C.
(
)(
)
2
1 5
1 5
x
x x
−
+
D.
(
)(
)
2
1
5
1
5
x
x
x
−
−
Zadanie 21
. Które z wyrażeń jest równe sumie
a
b
x
y
+ ?
A.
ab
xy
B.
a
b
xy
+
C.
ay
bx
xy
+
D.
ay
bx
x
y
+
+
Zadanie 22
. Wartość wyrażenia
3
2
4
x
x
x
+
dla
2
x
=
wynosi:
A. 1 2 2
+
B.
3 2
C.
3
2 4
+
D. 5 2
Zadanie 23
. Dane są wielomiany
( )
( )
5
2
3
2
2,
2
3
3
W x
x
x
V x
x
x
=
−
+
=
+
− . Stopień wielomianu
( ) ( )
W x V x
⋅
jest równy:
A. 10
B. 6
C. 7
D. 3
Zadanie 24
. Wyrażenie
3
3
1
x
x
−
−
jest równe:
A.
(
)
3
1
x
x
−
B.
(
)
9
1
x
x
−
C.
(
)
6
3
1
x
x
x
+
−
D.
0
Zadanie 25
. Wyrażenie
(
)
3
2
x
+
jest równe:
A.
3
8
x
+ B.
3
2
6
12
8
x
x
x
+
+
+ C.
3
2
3
6
8
x
x
x
+
+
+ D.
3
2
6
9
6
x
x
x
+
+
+
Wyrażenia algebraiczne
Zestaw 2
3
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie
1. Skróć podane wyrażenie wymierne:
3
2
2
5
5
4
5
x
x
x
x
x
+
− −
+
−
.
Zadanie 2.
Wyrażenie
3
2
4
2
x y
x
−
⎛
⎞
⎜
⎟
⎝
⎠
zapisz w postaci
p
q
Ax y .
Zadanie 3.
Podaj dziedzinę, a następnie wykonaj działanie i przedstaw wynik w jak najprostszej postaci:
2
2
2
3
x
x
x
x
−
−
+
.
Zadanie 4.
Sprawdź, czy wielomiany
( )
3
2
(
3)
7(
4) 25
W x
x
x
x
=
+
−
+
−
i
( ) (
)
(
)
2
2
2
5
H x
x
x
=
+
+
−
są równe.
Zadanie 5.
Oblicz wartość wyrażenia
(
) (
)
2
2
3
2
3
(2
3 )
x
y
x
y
x
y
+
⋅
−
−
−
dla
2,
8
x
y
=
=
.
Zadanie 6.
Pole trapezu, przedstawionego na rysunku, przedstaw w postaci wyrażenia algebraicznego.
Zadanie 7.
Wykaż, że suma kwadratów trzech kolejnych liczb naturalnych parzystych jest podzielna przez 4.
ZADANIA OTWARTE ROZSZERZONEJ ODPOWIEDZI
Zadanie 8.
Jeden z prostokątów ma boki długości
3
n
n
− i
1
n
− , drugi
3
2
n
n
− i
2
1
n
− , gdzie n jest ustaloną
liczbą naturalną i
2
n
≥ . Wykaż, że prostokąty te mają równe obwody i oblicz stosunek pól tych prostokątów.
Zadanie 9.
Jeden kilogram truskawek kosztuje t złotych, a jeden kilogram czereśni jest o 1,50 zł droższy.
Kupiono pięć kilogramów truskawek oraz pewną ilość czereśni. Ile kupiono kilogramów czereśni, skoro za
zakupy zapłacono 20 zł?
Zadanie 10.
Reszta z dzielenia liczby 998 przez liczbę naturalną n jest równa 8, zaś reszta z dzielenia liczby
133 przez tą samą liczbę naturalną n jest równa 7. Znajdź liczbę n.
Zadanie 11.
Wykaż, że dla dowolnych a
+
∈ R i b
+
∈ R zachodzi nierówność:
2
1 1
ab
a
b
≤
+
.