“Dane do projektu”
≔
M
2
⋅
19.9
=
M
2
⎛⎝
⋅
19.9 10
3
⎞⎠
⋅
“M2 - moment skr
ęcający”
≔
z
3
35
“z3 - liczba z
ębów koła 3 ”
≔
m
3
1.5
“m3 - moduł koła 3 ”
≔
ψ
3
17.7
“z2 - liczba z
ębów koła 2”
≔
z
2
58
“m2 - moduł koła 2”
≔
m
2
1
“Lh - godznowa trwało
ść łożyska”
≔
ψ
2
14.8
“α - k
ąt zarysu”
“β - k
ąt linii śrubowej ”
≔
L
h
11000
≔
β
°
20
≔
α
°
20
1
Created with Mathcad Express. See www.mathcad.com for more information.
“1.0. Obliczenia wst
ępne”
“1.1.
Średnica podziałowa koła z2 i z3”
=
m
2
1
=
z
2
58
=
β
20
=
m
3
1.5
=
z
3
35
≔
d
2
=
―――
⋅
m
2
z
2
cos ((β))
61.72
≔
d
3
=
―――
⋅
m
3
z
3
cos ((β))
55.87
=
d
2
61.722
=
d
3
55.869
“1.2. Siły obwodowe”
=
M
2
19.9
=
d
2
61.722
=
d
3
55.869
≔
P
2
=
――
⋅
2 M
2
d
2
644.824
≔
P
3
=
――
⋅
2 M
2
d
3
712.377
=
P
2
644.824
=
P
3
712.377
“1.3. Siły promieniowe”
=
P
2
644.824
=
P
3
712.377
=
α
20
≔
P
r2
=
⋅
P
2
―――
tan ((α))
tan ((β))
644.824
≔
P
r3
=
⋅
P
3
―――
tan ((α))
tan ((β))
712.377
=
P
r2
644.824
=
P
r3
712.377
“1.4. Siły osiowe”
≔
P
x2
=
⋅
P
2
tan ((β))
234.697
≔
P
x3
=
⋅
P
3
tan ((β))
259.284
=
P
x2
234.697
=
P
x3
259.284
“1.5. Szeroko
ści więców zębatych”
=
ψ
2
14.8
=
ψ
3
17.7
≔
b
2
=
⋅
m
2
ψ
2
14.8
≔
b
3
=
⋅
m
3
ψ
3
26.55
=
b
2
14.8
=
b
3
26.55
“2.0. Kryterium napr
ężeń dopuszczalnych”
“2.1. Długo
ści wału”
≔
Ł
20
=
b
2
14.8
=
b
3
26.55
≔
a
=
+
―――
⎛⎝ +
Ł
b
2
⎞⎠
2
25
42.4
≔
a
45
≔
b
=
+
―――
⎛⎝ +
b
2
b
3
⎞⎠
2
10
30.675
≔
b
35
≔
c
=
+
―――
⎛⎝ +
b
3
Ł⎞⎠
2
25
48.275
≔
c
50
2
Created with Mathcad Express. See www.mathcad.com for more information.
“2.2. Reakcje w w
ęzłach łożyskowych”
“2.2.1. W płaszczy
źnie x-y”
=
P
x2
234.697
=
P
r2
644.824
=
P
x3
259.284
=
P
r3
712.377
=
d
2
61.722
=
d
3
55.869
=
a
45
=
b
35
=
c
50
“-w punkcie 1, w
ęzeł łożyskowy C”
≔
R
y1
=
――――――――――――
−
+
+
⋅
P
x2
―
d
2
2
⋅
P
r2
(( +
b
c))
⋅
P
x3
―
d
3
2
⋅
P
r3
c
+
+
a
b
c
259.1
=
R
y1
259.055
“-w punkcie 4, w
ęzeł łożyskowy D”
≔
R
y4
=
――――――――――――
+
+
−
⋅
P
x2
―
d
2
2
⋅
P
r2
a
⋅
P
x3
―
d
3
2
⋅
P
r3
(( +
a
b))
+
+
a
b
c
326.6
=
R
y4
326.608
“2.2.2. W płaszczy
źnie x-z”
=
P
2
644.824
=
P
3
712.377
“-w punkcie 1, w
ęzeł łożyskowy C”
≔
R
z1
=
――――――
+
⋅
P
2
(( +
b
c))
⋅
P
3
c
+
+
a
b
c
695.606
=
R
z1
695.606
“-w punkcie 4, w
ęzeł łożyskowy D”
≔
R
z4
=
――――――
+
⋅
P
2
a
⋅
P
3
(( +
a
b))
+
+
a
b
c
661.594
=
R
z4
661.594
3
Created with Mathcad Express. See www.mathcad.com for more information.
“2.2.3. Siły obci
ążające węzły łożyskowe”
=
R
y1
259.055
=
R
z1
695.606
=
R
y4
326.608
=
R
z4
661.594
“-obci
ążenie promieniowe łożyska w ptk 1”
≔
F
r1
=
‾‾‾‾‾‾‾‾‾
+
R
y1
2
R
z1
2
742.279
=
F
r1
742.279
“-obci
ążenie promieniowe łożyska w ptk 4”
≔
F
r4
=
‾‾‾‾‾‾‾‾‾
+
R
y4
2
R
z4
2
737.821
=
F
r4
737.821
=
P
x2
234.697
=
P
x3
259.284
“-obci
ążenie osiowe łożyska”
≔
F
a
=
||
−
P
x2
P
x3
|| 24.59
=
F
a
24.587
“2.3. Momenty gn
ące”
“2.3.1. W płaszczy
źnie x-y”
=
a
45
=
b
35
=
P
x2
234.697
=
P
r2
644.824
=
P
x3
259.284
≔
M
gy1
0
=
M
gy1
0
≔
M
gy2
=
⋅
R
y1
a
⎛⎝
⋅
11.657 10
3
⎞⎠
=
M
gy2
⎛⎝
⋅
11.657 10
3
⎞⎠
⋅
≔
M'
gy2
=
−
M
gy2
⋅
P
x2
―
d
2
2
⎛⎝
⋅
4.414 10
3
⎞⎠
⋅
=
M'
gy2
⎛⎝
⋅
4.414 10
3
⎞⎠
⋅
≔
M
gy3
=
−
−
⋅
R
y1
(( +
a
b))
⋅
P
x2
―
d
2
2
⋅
P
r2
b
⋅
−9.087 10
3
⋅
=
M
gy3
⋅
−9.087 10
3
⋅
≔
M'
gy3
=
−
M
gy3
⋅
P
x3
―
d
3
2
⋅
−16.33 10
3
⋅
=
M'
gy3
⋅
−16.33 10
3
⋅
≔
M
gy4
0
=
M
gy4
0
“2.3.2. W płaszczy
źnie x-z”
=
R
z1
695.606
=
P
2
644.824
≔
M
gz1
0
≔
M
gz1
0
≔
M
gz2
=
⋅
R
z1
a
⎛⎝
⋅
31.302 10
3
⎞⎠
⋅
=
M
gz2
⎛⎝
⋅
31.302 10
3
⎞⎠
⋅
≔
M
gz3
=
−
⋅
R
z1
(( +
a
b))
⋅
P
2
b
⎛⎝
⋅
33.08 10
3
⎞⎠
⋅
=
M
gz3
⎛⎝
⋅
33.08 10
3
⎞⎠
⋅
≔
M
gz4
0
=
M
gz4
0
4
Created with Mathcad Express. See www.mathcad.com for more information.
“2.4. Moment gn
ący maksymalny”
=
M
gy1
0
=
M
gz1
0
=
M
gy2
⎛⎝
⋅
11.657 10
3
⎞⎠
⋅
=
M'
gy2
⎛⎝
⋅
4.414 10
3
⎞⎠
⋅
=
M
gz2
⎛⎝
⋅
31.302 10
3
⎞⎠
⋅
=
M
gy3
⋅
−9.087 10
3
⋅
=
M
gz3
⎛⎝
⋅
33.08 10
3
⎞⎠
⋅
=
M'
gy3
⋅
−16.33 10
3
⋅
=
M
gy4
0
=
M
gz4
0
≔
M
g1
=
‾‾‾‾‾‾‾‾‾‾‾
+
M
gy1
2
M
gz1
2
0
=
M
g1
0
≔
M
g2
=
‾‾‾‾‾‾‾‾‾‾‾
+
M
gy2
2
M
gz2
2
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
=
M
g2
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
≔
M'
g2
=
‾‾‾‾‾‾‾‾‾‾‾‾
+
M'
gy2
2
M
gz2
2
⎛⎝
⋅
31.612 10
3
⎞⎠
⋅
=
M'
g2
⎛⎝
⋅
31.612 10
3
⎞⎠
⋅
≔
M
g3
=
‾‾‾‾‾‾‾‾‾‾‾
+
M
gy3
2
M
gz3
2
⎛⎝
⋅
34.305 10
3
⎞⎠
⋅
=
M
g3
⎛⎝
⋅
34.305 10
3
⎞⎠
⋅
≔
M'
g3
=
‾‾‾‾‾‾‾‾‾‾‾‾
+
M'
gy3
2
M
gz3
2
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
=
M'
g3
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
≔
M
g4
=
‾‾‾‾‾‾‾‾‾‾‾
+
M
gy4
2
M
gz4
2
0
=
M
g4
0
“2.5. Momenty redukowane”
=
M
g2
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
=
M'
g2
⎛⎝
⋅
31.612 10
3
⎞⎠
⋅
=
M
2
⎛⎝
⋅
19.9 10
3
⎞⎠
⋅
=
M
g3
⎛⎝
⋅
34.305 10
3
⎞⎠
⋅
=
M'
g3
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
≔
M
z1
0
=
M
z1
0
≔
M
z2g
=
M
g2
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
=
M
z2g
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
≔
M'
z2s
=
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
+
M'
g2
2
⋅
0.19 M
2
2
⎛⎝
⋅
32.781 10
3
⎞⎠
⋅
=
M'
z2s
⎛⎝
⋅
32.781 10
3
⎞⎠
⋅
≔
M
z3s
=
‾‾‾‾‾‾‾‾‾‾‾‾‾‾
+
M
g3
2
⋅
0.19 M
2
2
⎛⎝
⋅
35.385 10
3
⎞⎠
⋅
=
M
z3s
⎛⎝
⋅
35.385 10
3
⎞⎠
⋅
≔
M'
z3g
=
M'
g3
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
=
M'
z3g
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
≔
M
z4
0
=
M
z4
0
5
Created with Mathcad Express. See www.mathcad.com for more information.
“2.6.
Średnice powierzchni funkcjonalnych”
“2.6.1. Napr
ężenia dopuszczalne”
“Przyj
ęto stal węglową E335”
≔
R
m
600 ――
2
“Rm - wytrzymało
ść doraźna na rozciąganie mat. E335”
“wg. PN-88/H-84020”
≔
x
z
3.5
“xz - współczynnik bezpiecze
ństwa”
≔
k
go
=
―――
⋅
0.42 R
m
x
z
72 ――
2
“kgo - przy wachadłowym zginaniu”
=
k
go
72 ――
2
≔
k
sj
=
―――
⋅
0.56 R
m
x
z
96 ――
2
“ksj - przy t
ętniącym skręcaniu”
=
k
sj
96 ――
2
“2.6.2. Obliczenieniowe
średnice pod łożyskiem C”
=
M
z2g
⎛⎝
⋅
33.403 10
3
⎞⎠
⋅
=
Ł
20
=
a
⎛⎝ ⋅
45 10
−3
⎞⎠
=
k
go
72 ――
2
≔
d'
1
=
‾‾‾‾‾‾‾‾‾
3
――――
⋅
⋅
32 M
z2g
Ł
⋅
⋅
⋅
2
a k
go
10.164
=
d'
1
10.164
“2.6.3. Obliczeniowa
średnica pod kołem zębatym z2”
=
M'
z2s
⎛⎝
⋅
32.781 10
3
⎞⎠
⋅
≔
d'
2
=
‾‾‾‾‾‾‾‾
3
―――
⋅
32 M'
z2s
⋅ k
go
16.676
=
d'
2
16.676
“2.6.4. Obliczeniowa
średnica pod kołęm zębatym z3”
=
M'
z3g
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
≔
d'
3
=
‾‾‾‾‾‾‾‾
3
―――
⋅
32 M'
z3g
⋅ k
go
17.346
=
d'
3
17.346
“2.6.5. Obliczeniowa
średnica pod łożyskiem D (4)”
=
M'
z3g
⎛⎝
⋅
36.891 10
3
⎞⎠
⋅
=
Ł
20
=
c
50
≔
d'
4
=
‾‾‾‾‾‾‾‾‾‾
3
――――
⋅
⋅
32 M'
z3g
Ł
⋅
⋅
⋅
2
c k
go
10.144
=
d'
4
10.144
6
Created with Mathcad Express. See www.mathcad.com for more information.
“3.0. Kryterium dopuszczalnego ugi
ęcia”
“3.1. Ugi
ęcie w płaszczyźnie x-y”
“3.1.1. Stałe całkowania”
=
a
45
=
b
35
=
c
50
=
R
y1
259.055
=
P
x2
234.697
=
P
r2
644.824
=
P
x3
259.284
=
P
r3
712.377
=
d'
2
16.676
=
d'
3
17.346
≔
L
=
+
+
a
b
c
130
“- odległo
ść między węzłami łożyskowymi”
=
L
130
=
L
130
≔
C
y
⋅
――
1
⋅
6 L
⎛
⎜
⎜⎝
−
−
+
−
⋅
R
y1
L
3
⋅
P
r2
(( +
b
c))
3
⋅
P
r3
c
3
⋅
3 ――――――
⋅
⋅
P
x2
d'
2
(( +
b
c))
2
2
⋅
3 ――――
⋅
⋅
P
x3
d'
3
c
2
2
⎞
⎟
⎟⎠
=
C
y
⎛⎝
⋅
260.138 10
3
⎞⎠
⋅
2
“3.1.2.
Średnia średnica wału”
=
d'
1
10.164
=
d'
4
10.144
=
Ł
20
=
d'
2
16.676
=
d'
3
17.346
≔
d
so
=
⋅
―
1
L
⎛
⎜
⎝
+
⋅
―
Ł
2
⎛⎝
+
d'
1
d'
4
⎞⎠
⋅
――
−
L
Ł
2
⎛⎝
+
d'
2
d'
3
⎞⎠
⎞
⎟
⎠
15.956
=
d
so
15.956
“3.1.3. Ugi
ęcie pod kołem z2”
≔
E
⋅
2.1 10
5
――
2
“- stała Younga”
=
d
so
15.956
=
C
y
⎛⎝
⋅
260.138 10
3
⎞⎠
⋅
2
=
a
45
=
R
y1
259.055
≔
f
y2
=
⋅
――――
64
⋅
⋅ d
so
4
E
⎛
⎜
⎝
−
⋅
C
y
a
―――
⋅
R
y1
a
3
6
⎞
⎟
⎠
⎛⎝
⋅
11.631 10
−3
⎞⎠
=
f
y2
⎛⎝
⋅
11.631 10
−3
⎞⎠
7
Created with Mathcad Express. See www.mathcad.com for more information.
“3.1.4. Ugi
ęcie pod kołem z3”
=
d
so
15.956
=
E
⎛⎝
⋅
210 10
3
⎞⎠ ――
2
=
C
y
⎛⎝
⋅
260.138 10
3
⎞⎠
⋅
2
=
a
45
=
b
35
=
P
r2
644.824
=
P
x2
234.697
=
d'
2
16.676
=
R
y1
259.055
≔
f
y3
=
⋅
――――
64
⋅
⋅ d
so
4
E
⎛
⎜
⎜⎝
−
+
+
⋅
C
y
(( +
a
b))
―――
⋅
P
r2
b
3
6
――――
⋅
⋅
P
x2
d'
2
b
2
4
――――
⋅
R
y1
(( +
a
b))
3
6
⎞
⎟
⎟⎠
⎛⎝
⋅
6.752 10
−3
⎞⎠
=
f
y3
⎛⎝
⋅
6.752 10
−3
⎞⎠
“3.2. Ugi
ęcie w płaszczyźnie x-z”
“3.2.1. Stałe całkowania”
=
R
z1
695.606
=
P
2
644.824
=
P
3
712.377
=
c
50
=
L
130
≔
C
z
=
⋅
――
1
⋅
6 L
⎛
⎝
−
−
⋅
R
z1
L
3
⋅
P
2
(( +
b
c))
3
⋅
P
3
c
3
⎞
⎠
⎛⎝
⋅
1.337 10
6
⎞⎠
⋅
2
=
C
z
⎛⎝
⋅
1.337 10
6
⎞⎠
⋅
2
“3.2.2. Ugi
ęcie pod kołem z2”
=
C
z
⎛⎝
⋅
1.337 10
6
⎞⎠
⋅
2
≔
f
z2
=
⋅
――――
64
⋅
⋅ d
so
4
E
⎛
⎜
⎝
−
⋅
C
z
a
―――
⋅
R
z1
a
3
6
⎞
⎟
⎠
⎛⎝
⋅
74.261 10
−3
⎞⎠
=
f
z2
⎛⎝
⋅
74.261 10
−3
⎞⎠
“3.2.3. Ugi
ęcie pod kołem z3”
≔
f
z3
=
⋅
――――
64
⋅
⋅ d
so
4
E
⎛
⎜
⎜⎝
−
+
⋅
C
z
(( +
a
b))
―――
⋅
P
2
b
3
6
――――
⋅
R
z1
(( +
a
b))
3
6
⎞
⎟
⎟⎠
⎛⎝
⋅
78.188 10
−3
⎞⎠
=
f
z3
⎛⎝
⋅
78.188 10
−3
⎞⎠
“3.3 Max. strzałki ugi
ęcia”
“3.3.1. Pod kołem z2”
=
f
y2
⎛⎝
⋅
11.631 10
−3
⎞⎠
=
f
z2
⎛⎝
⋅
74.261 10
−3
⎞⎠
≔
f
2
=
‾‾‾‾‾‾‾‾
+
f
y2
2
f
z2
2
⎛⎝
⋅
75.167 10
−3
⎞⎠
=
f
2
⎛⎝
⋅
75.167 10
−3
⎞⎠
“3.3.2. Pod kołem z3”
=
f
y3
⎛⎝
⋅
6.752 10
−3
⎞⎠
≔
f
3
=
‾‾‾‾‾‾‾‾
+
f
y3
2
f
z3
2
⎛⎝
⋅
78.479 10
−3
⎞⎠
=
f
3
⎛⎝
⋅
78.479 10
−3
⎞⎠
8
Created with Mathcad Express. See www.mathcad.com for more information.
“3.4. Dopuszczalne ugi
ęcie”
=
L
130
≔
f
dop
=
⋅
⋅
2 10
−4
L
⎛⎝ ⋅
26 10
−3
⎞⎠
=
f
dop
⎛⎝ ⋅
26 10
−3
⎞⎠
=
f
2
⎛⎝
⋅
75.167 10
−3
⎞⎠
=
f
3
⎛⎝
⋅
78.479 10
−3
⎞⎠
“Stosujemy współczynnik poprawkowy
średnicy , ponieważ fdop<f2 oraz fdop<f3”
“3.5. Współczynniki poprawkowe
średnicy”
“3.5.1. Pod kołem z2”
=
f
dop
⎛⎝ ⋅
26 10
−3
⎞⎠
≔
k
12
=
‾‾‾‾
4
――
f
2
f
dop
1.304
=
k
12
1.304
“3.5.2. Pod kołem z3”
≔
k
13
=
‾‾‾‾
4
――
f
3
f
dop
1.318
=
k
13
1.318
“3.5.3. Współczynnik poprawkowy”
“k1=max(k12 u k13) = k13”
≔
k
1
k
13
=
k
1
1.318
“4.0. Kryterium dopuszczalnego k
ąta skręcenia”
“4.1. Wzgl
ędny kąt skręcenia wału”
≔
G
⋅
8.1 10
4
――
2
“- wspolczynnik sztywnosci postaciowej”
=
M
2
⎛⎝
⋅
19.9 10
3
⎞⎠
⋅
=
d
so
15.956
≔
φ
sr
=
―――――
⋅
32 M
2
⋅
⋅ G ⎛⎝ ⋅
k
1
d
so
⎞⎠
4
⎛⎝
⋅
12.79 10
−6
⎞⎠ ――
1
“-podatnosc skretna walu”
=
φ
sr
⎛⎝
⋅
12.79 10
−6
⎞⎠ ――
1
“4.2. Dopouszczalny k
ąt skręcania”
≔
φ
dop
⋅
4 10
−6
――
1
>
φ
sr
φ
dop
“Informacja ta mówi nam,
że musimy dodatkowo policzyć punkt 4.3.”
9
Created with Mathcad Express. See www.mathcad.com for more information.
“4.3. Współczynnik poprawkowy
średniej średnicy”
=
φ
sr
⎛⎝
⋅
12.79 10
−6
⎞⎠ ――
1
=
φ
dop
⎛⎝ ⋅
4 10
−6
⎞⎠ ――
1
≔
k
2
=
‾‾‾‾
4
――
φ
sr
φ
dop
1.337
=
k
2
1.337
“4.4.
Średnica wału po korekcie”
=
d'
1
10.164
=
d'
2
16.676
=
d'
3
17.346
=
d'
4
10.144
=
k
1
1.318
=
k
2
1.337
≔
d
1
=
⋅
⋅
d'
1
k
1
k
2
17.916
=
d
1
17.916
≔
d
2w
=
⋅
⋅
d'
2
k
1
k
2
29.393
=
d
2w
29.393
≔
d
3w
=
⋅
⋅
d'
3
k
1
k
2
30.574
=
d
3w
30.574
≔
d
4
=
⋅
⋅
d'
4
k
1
k
2
17.88
=
d
4
17.88
“Po poprawkach przyj
ęto:”
≔
d
1
20
≔
d
2w
30
≔
d
3w
32
≔
d
4
20
“4.4.1. Koło z2 - nasadzane?”
=
d
2
61.722
=
m
2
1
≔
d
f2
=
−
d
2
⋅
2.5 m
2
59.222
=
d
f2
59.222
=
d
f2
59.222
=
M
2
19.9
⋅
≔
d
d2
=
−
d
f2
⋅
⋅
2 3.45
‾‾‾‾
3
19.9
40.524
=
d
d2
40.524
=
d
2w
30
=
d
d2
40.524
“kolo 2 nasadzane bo d2w<dd2”
10
Created with Mathcad Express. See www.mathcad.com for more information.
“4.4.2. Koło z3 - nasadzane?”
=
d
3
55.869
=
m
3
1.5
≔
d
f3
=
−
d
3
⋅
2.5 m
3
52.119
=
d
f3
52.119
=
d
f3
52.119
=
M
2
19.9
⋅
≔
d
d3
=
−
d
f3
⋅
⋅
2 3.45
‾‾‾‾
3
19.9
33.421
=
d
d3
33.421
=
d
3w
32
=
d
d3
33.421
“kolo 3 nasadzane bo d3w<dd3”
“4.5. Długo
ść rowka wspustowego”
“4.5.1. Koło 2”
≔
t
22
3.3
“-gł
ębokość piasty”
≔
z
2
1
“-liczba wpustów”
≔
k
dw
100 ――
2
“-dopuszczalne naciski powierzchniowe”
=
d
2w
30
≔
b
w2
8
“-szeroko
ść wpustu”
=
M
2
⎛⎝
⋅
19.9 10
3
⎞⎠
⋅
≔
l
2
=
+
―――――
⋅
2 M
2
⋅
⋅
⋅
d
2w
k
dw
t
22
z
2
b
w2
12.02
=
l
2
12.02
“Przyj
ęto wpust A8x7x18 ”
“wg PN-70/M-85005”
“4.5.2. Koło 3”
≔
t
22
3.3
“-gł
ębokość piasty”
≔
z
3
1
“-liczba wpustów”
=
d
3w
32
≔
b
w3
8
“-szeroko
ść wpustu”
≔
l
2
=
+
―――――
⋅
2 M
2
⋅
⋅
⋅
d
3w
k
dw
t
22
z
3
b
w3
11.769
=
l
2
11.769
“Przyj
ęto wpust A10x8x22 ”
“wg PN-70/M-85005”
11
Created with Mathcad Express. See www.mathcad.com for more information.
“5.0. Ło
żyskowanie toczne”
“5.1. W
ęzeł ustalony”
=
F
r1
742.279
=
F
r4
737.821
=
F
a
24.587
=
d
1
20
=
d
4
20
≔
n
2
1000
“Fr1>Fr4”
“5.1.1. Parametry konstrukcyjne”
“Wst
ępnie założono łożysko nr 16004”
≔
C
01
4050
“- nominalna no
śność statycza”
≔
C
1
7000
“- nominalna no
śność dynamiczna”
=
――
F
a
C
01
⋅
6.071 10
−3
≔
e
0.19
≔
X
1
≔
Y
0
“przyjmujemy Fa/C01=0.014”
=
――
F
a
F
r4
⋅
33.324 10
−3
“5.1.2. Siła zast
ępcza”
≔
P
1
=
F
r4
737.821
=
P
1
737.821
“5.1.3. Wska
źnik prędkości i trwałości łożyska”
=
L
h
⎛⎝ ⋅
11 10
3
⎞⎠
≔
W
=
‾‾‾‾‾‾‾‾‾‾‾‾‾
3
―――――
⋅
L
h
n
2
⋅
⋅
16660
8.708
=
W
8.708
“5.1.4. Obliczeniowa no
śność ruchowa”
=
W
8.708
=
P
1
737.821
≔
C'
1
=
⋅
W P
1
⎛⎝
⋅
6.425 10
3
⎞⎠
=
C'
1
⎛⎝
⋅
6.425 10
3
⎞⎠
=
C
1
⎛⎝ ⋅
7 10
3
⎞⎠
=
C'
1
⎛⎝
⋅
6.425 10
3
⎞⎠
“C '1<C1”
“przyj
ęt łożysko kulkowe zwykłe nr 16004, gdzie śrenica wewnętrzna d=20 mm”
“
średnica zewnętrzna D=42mm; szerokość B=8mm; nominalna nośność dynamiczna Cu=7000N”
“5.2. W
ęzeł pływający”
≔
C'
4
=
⋅
W F
r4
⎛⎝
⋅
6.425 10
3
⎞⎠
≔
d
amin
20
=
C'
4
⎛⎝
⋅
6.425 10
3
⎞⎠
“C '4<C1”
“przyj
ęt łożysko kulkowe zwykłe nr 16004, gdzie śrenica wewnętrzna d=20 mm”
“
średnica zewnętrzna D=42mm; szerokość B=8mm; nominalna nośność dynamiczna Cu=7000N”
12
Created with Mathcad Express. See www.mathcad.com for more information.
“6.0. Elementy mocowania i technologiczne”
“6.1. Pier
ścienie osadcze sprężyste”
“
Średnica”
“Oznaczenie”
“Szerokow
ść rowka” “Średnica wew. rowka” “Odl. od końca czopa”
d
4
=
d
1
20
20 z
1.3 H13
19 h12
1.5
=
d
2w
30
30 z
1.6 H13
28.6 h12
2.1
=
d
3w
32
32 z
1.6 H13
30.3 h12
2.6
“6.2. Nakiełki”
“
Średnia średnica wału”
=
k
1
1.318
=
k
2
1.337
=
d
so
15.956
≔
d
sr
=
⋅
⋅
k
1
k
2
d
so
28.124
=
d
sr
28.124
“Oznaczenie”
“Nakiełek A2,5 wg PN-EN ISO 6411:2002”
“6.3. Podci
ęcie obróbkowe”
“
Średnica wału”
“Oznaczenie”
“d1=d4=20mm”
“C1,6 wg. PN-58/M-02043”
13
Created with Mathcad Express. See www.mathcad.com for more information.