nieliniowe id 318731 Nieznany

background image

NONPARAMETRIC APPROACH TO IDENTIFICATION

OF BLOCK-ORIENTED SYSTEMS

Grzegorz Mzyk, Zygmunt Hasiewicz

The Institute of Computer Engineering, Control and Robotics

Wrocław University of Technology

Wrocław, Poland

background image

Statement of the problem

k

u

k

y

k

z

k

w

( )

µ

{ }

=

0

i

i

γ

k

v

Fig.1. Hammerstein system

( )

{

|

}

( )

k

k

R u

y

u

u

c u

s

µ

=

=

=

+

E

=

+

=

0

)

(

i

k

i

k

i

k

z

u

y

µ

γ

background image

NONPARAMETRIC METHODS

background image

Kernel regression estimation

1

1

ˆ ( )

( )

( )

M

M

i

i

M

i

i

i

u u

u u

u

y K

K

h M

h M

µ

=

=

=

Theorem 1. If

( )

0

h M

and

( )

Mh M

→ ∞

as

M

→ ∞

then

ˆ ( )

( )

M

u

u

µ

µ

in probability as

M

→ ∞

in each continuity point of ()

µ

and the input probability density.

background image

Theorem 2. If

()

µ

is twice differentiable in the point

u

then for

1/ 5

( )

(

)

h M

O M

=

it holds that

2/ 5

ˆ ( )

( )

(

)

M

u

u

O M

µ

µ

=

background image

Orthogonal expansion

( )

( )

( )

u

g u

f u

µ

=

, where

( )

( )

( )

u

g u

f u

µ

=

0

0

( )

( ),

( )

( )

i i

i i

i

i

g u

a

u

f u

b

u

φ

φ

=

=

=

=

( ),

( )

i

k

i

k

i

i

k

a

y

u

b

u

φ

φ

=

=

E

E

1

1

1

1

ˆ

ˆ

( ),

( )

M

M

i

k i

k

i

i

k

k

k

a

y

u

b

u

M

M

φ

φ

=

=

=

=

background image

(

)

0

( )

0

ˆ

( )

ˆ ( )

ˆ ( )

q M

i i

i

M

q M

i i

i

u

a

u

b

u

µ

φ

φ

=

=

=

The convergence conditions:

trigonometric series

2

( )

lim

0

M

q M

M

→∞

=

Legendre series

2

( )

lim

0

M

q M

M

→∞

=

Laguerre series

6

( )

lim

0

M

q M

M

→∞

=

Hermite series

5/ 3

( )

lim

0

M

q

M

M

→∞

=

Daubechies wavelets

2 ( ) 2

2

lim

0

q M

M

M

+

→∞

=

background image

COMBINED PARAMETRIC-

NONPARAMETRIC ALGORITHMS

background image

Estimation of the static nonlinearity

( )

( , )

k

k

u

u c

µ

µ

=

1

2

( )

sin(

)

c u

k

k

u

e

c u

µ

=

+

(

)

2

,

,

1

ˆ

ˆ

arg min

( , )

N

N M

c

k M

k

k

c

w

u c

µ

=

=

(

)

1

,

,

ˆ

ˆ

T

T

N M

N

N

N

N M

c

W

= Φ Φ

Φ

1

2

( ( ), ( ),...,

( ))

T

N

k

k

N

k

u

u

u

φ

φ

φ

Φ =

(

)

1

2

( )

( ), ( ),...,

( )

T

k

k

k

m

k

u

f u

f u

f u

φ

=

background image

Identification of the linear dynamics

(

)

1

,

,

,

,

ˆ

ˆ

ˆ

ˆ

T

T

N M

N M

N M

N M N

Y

θ

= Ψ

Θ

Ψ

0

1

1

2

(

, ,...,

, ,

,...,

)

T

s

p

θ

α α

α β β

β

=

T

k

k

k

y

z

ϑ θ

=

+

1

1

2

(

,

,...,

,

,

,...,

)

T

k

k

k

k s

k

k

k p

w w

w

y

y

y

ϑ

=

1

2

( ,

,...,

)

T

N

N

Y

y y

y

=

,

1

2

ˆ

( ,

,...,

)

T

N M

N

ϑ ϑ

ϑ

Θ

=

background image

,

,

0,

ˆ

ˆ

ˆ

/

i M

i M

M

γ

χ

χ

=

,

1

1

ˆ

(

)(

)

M i

i M

k i

k

k

y

y u

u

M

χ

+

=

=

1

1

1

1

,

M

M

k

k

k

k

y

y

u

u

M

M

=

=

=

=

Nonparametric instrumental variables

*

1

(

,...,

,

,...,

)

T

k

k

k s

k

k p

w

w

y

y

ψ

=

#

1

(

,...,

,

,...,

)

T

k

k

k s

k

k p

w

w

y

y

ψ

=





,

,

0

ˆ

ˆ

APR

k

i M

k i M

i

y

w

γ

=

=



background image

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

-1,2

-0,8

-0,4

0,0

0,4

0,8

1,2

( )

u

µ

nonparametric

kernel estimate

parametric-nonparametric

estimate

true

Example

background image

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

-1

1

3

5

7

9

11

impulse response

true

nonparametric

estimate

background image

Conclusions

• Each part is identified separately
• The convergence is strictly proved

Hasiewicz, Z. and G. Mzyk (2004). Combined parametric-nonparametric identification
of Hammerstein systems. IEEE Transactions on Automatic Control, vol. 49, pp. 1370-
1376.
Hasiewicz, Z. and G. Mzyk (2006). Nonparametric instrumental variables for
Hammerstein system identification. IEEE Transactions on Automatic Control
(submitted to)

• The method works under existence of correlated random

noise


Wyszukiwarka

Podobne podstrony:
instr wo nieliniowe id 215422 Nieznany
nieliniowe zjawiska id 318738 Nieznany
Abolicja podatkowa id 50334 Nieznany (2)
4 LIDER MENEDZER id 37733 Nieznany (2)
katechezy MB id 233498 Nieznany
metro sciaga id 296943 Nieznany
perf id 354744 Nieznany
interbase id 92028 Nieznany
Mbaku id 289860 Nieznany
Probiotyki antybiotyki id 66316 Nieznany
miedziowanie cz 2 id 113259 Nieznany
LTC1729 id 273494 Nieznany
D11B7AOver0400 id 130434 Nieznany
analiza ryzyka bio id 61320 Nieznany
pedagogika ogolna id 353595 Nieznany
Misc3 id 302777 Nieznany
cw med 5 id 122239 Nieznany

więcej podobnych podstron