Egzamin dla Aktuariuszy z 11 października 2004 r.
Prawdopodobieństwo i Statystyka
Zadanie 1
0
0
0
1
1
,
0
9
,
0
0
0
1
,
0
0
9
,
0
0
01
,
0
09
,
0
09
,
0
81
,
0
rozkład stacjonarny:
Π
=
Π
Π
=
Π
Π
=
Π
→
Π
=
Π
+
Π
+
Π
Π
=
Π
+
Π
Π
=
Π
+
Π
Π
=
Π
+
Π
1
3
1
2
1
4
4
3
2
1
3
3
1
2
2
1
1
4
1
9
,
0
9
,
0
19
,
0
1
,
0
1
,
0
01
,
0
9
,
0
09
,
0
9
,
0
09
,
0
81
,
0
1
19
,
0
9
,
0
9
,
0
1
1
1
1
=
Π
+
Π
+
Π
+
Π
1
99
,
2
1
=
Π
299
100
1
=
Π
299
90
3
2
=
Π
=
Π
299
19
4
=
Π
635
,
0
299
190
299
90
299
100
3
1
≈
=
+
=
Π
+
Π
=
ODP
Zadanie 2
(
)
(
)
∑
∞
=
=
=
=
1
)
(
k
N
N
k
N
P
k
N
NZ
E
NZ
E
)
(
1
)
(min
1
)
(min
n
α
wykl
e
t
P
t
P
nx
α
≅
−
=
>
−
=
≤
−
(
)
α
k
α
k
k
N
NZ
E
N
1
=
=
=
(
)
(
)
∑
∞
=
−
=
−
−
+
=
1
1
1
)
1
(
1
1
k
r
k
r
N
p
α
p
p
k
r
k
α
NZ
E
(
)
(
)
∑
∞
=
=
=
=
1
2
2
2
2
)
(
k
N
N
k
N
P
k
N
Z
N
E
Z
N
E
(
)
(
)
2
2
2
2
2
2
2
2
2
2
α
k
α
k
k
N
Z
E
k
k
N
Z
N
E
N
N
=
=
=
=
=
(
)
(
)
∑
∞
=
−
=
−
−
+
=
1
2
2
2
2
1
2
)
1
(
1
2
k
r
k
r
N
p
α
p
p
k
r
k
α
Z
N
E
(
)
(
) (
)
(
)
[
]
(
)
2
2
2
2
2
2
2
1
1
1
1
2
1
1
1
1
2
var
α
p
p
α
p
p
α
p
p
α
p
α
NZ
r
r
r
r
r
r
r
N
−
=
+
−
=
−
−
−
=
−
−
−
=
Zadanie 3
=
+
=
X
W
Y
X
Z
2
∆
=
+
<
<
<
Z
X
Z
W
0
−
=
=
2
W
U
Y
W
X
∆
∈
≠
−
=
−
=
)
,
(
0
2
1
2
1
2
1
1
0
v
u
dV
dY
dU
dY
dV
dX
dU
dX
w:=x
x
e
x
z
x
f
−
=
−
2
1
2
1
2
;
0<x<z<x+2
czyli odpowiedź (D) prawidłowa
Zadanie 4
1: 0b
Nc
2: 1b
(N-1)c
3: 2b
(N-2)c
...
...
N: (N-1)b
1c
N+1: Nb
0c
(
)
(
) ( )
∑
+
=
=
1
1
1
,
1
2
1
2
N
k
B
k
P
k
B
B
P
B
B
P
( ) ( )
)
1
(
)
(
1
1
B
P
k
P
k
B
P
B
k
P
=
( )
1
1
)
(
,
1
1
+
=
−
=
N
k
P
N
k
k
B
P
∑
+
=
=
−
+
+
+
=
+
−
+
+
+
+
=
+
−
=
1
1
2
1
2
2
2
2
)
1
(
)
1
(
1
)
1
(
)
1
(
2
1
1
)
1
(
1
1
1
1
)
1
(
N
k
N
N
N
N
N
N
N
N
N
N
N
k
B
P
( )
)
1
(
)
1
(
2
1
+
−
=
N
N
k
B
k
P
(
)
0
1
k
dla
1
2
,
1
2
→=
=
−
−
=
N
k
k
B
B
P
Z tego:
∑
∑
+
=
−
+
+
⋅
+
⋅
=
+
=
=
+
−
+
−
=
−
−
+
−
=
+
−
−
−
=
1
2
)
1
(
...
3
2
2
1
1
2
3
2
3
)
1
(
)
1
(
)
1
(
)
1
(
2
)
1
)(
2
(
)
1
(
)
1
(
2
)
1
(
)
1
(
)
1
(
2
)
2
(
N
k
N
N
N
k
N
N
N
N
N
N
k
k
N
N
N
N
N
N
k
k
ODP
4
4 8
4
4 7
6
Zadanie 5
(
)
(
)
∫
∫
≅
−
=
=
=
=
=
=
≤
=
<
−
−
−
t
t
θ
t
θ
w
θ
x
θ
wykl
e
e
θ
dw
xdx
w
x
dx
xe
θ
t
X
P
t
X
P
0
0
2
2
1
1
2
1
2
2
2
2
≅
θ
n
wykl
Y
n
n
θ
n
θ
a
θ
n
θ
a
EaY
=
=
→
=
=
n
n
nY
T
=
(
)
(
)
=
+
<
<
−
−
=
<
−
<
−
−
=
>
−
n
θ
ε
Y
n
ε
θ
P
ε
θ
nY
ε
P
ε
θ
nY
P
θ
n
θ
n
θ
1
1
=
−
−
=
−
−
=
>
=
−
−
−
+
−
−
−
1
1
1
1
:
e
e
e
e
e
e
ε
θ
zal
θ
ε
θ
ε
θ
n
n
θ
ε
θ
n
n
ε
θ
)
(
exp
exp
)
1
exp(
1
B
θ
ε
θ
ε
→
−
−
−
−
=
Zadanie 6
(
)
(
)
(
)
+
−
−
=
Π
Π
∑
∑
∑
∑
−
−
−
−
2
2
1
2
1
2
2
2
2
2
2
100
2
100
2
2
exp
2
1
2
1
2
2
1
2
2
2
σ
µ
X
σ
µ
σ
µ
X
σ
µ
e
σ
e
σ
i
i
σ
µ
X
σ
µ
X
i
i
(
)
∑
=
→
⋅
=
∑
−
>
i
µ
µ
X
σ
µ
µ
X
STAT
e
C
i
1
2
2
1
2
1
(
)
∑
≅
2
0
100
;
100
σ
µ
N
X
i
(
)
0
0
0
0
100
4
,
16
64
,
1
10
100
05
,
0
10
100
µ
σ
t
σ
µ
t
σ
µ
t
X
P
t
X
P
i
+
=
→
=
−
→
=
−
>
=
>
∑
(
)
2
10
1
,
cov
σ
X
X
j
i
=
(
)
2
2
2
2
2
2
2
1090
10
99
100
10
1
!
98
2
!
100
2
100
10
1
2
100
2
100
var
σ
σ
σ
σ
σ
σ
σ
X
i
=
⋅
+
=
⋅
+
=
+
=
∑
(
)
(
)
=
≅
=
+
>
∑
∑
2
0
0
1090
;
100
100
4
,
6
1
σ
µ
N
X
µ
σ
X
P
i
i
31
,
0
1090
4
,
16
1090
100
100
4
,
16
5
,
0
0
0
≈
>
=
−
+
>
=
≈
8
7
6
X
P
σ
µ
µ
σ
X
P
Zadanie 7
(
)
m
a
a
a
a
m
E
4
3
2
1
ˆ
+
+
+
=
( )
(
) (
)
2
2
4
2
3
2
2
2
1
2
2
4
2
2
3
2
2
2
2
2
1
2
4
3
2
4
3
2
ˆ
m
a
a
a
a
m
a
m
a
m
a
m
a
m
σ
+
+
+
=
+
+
+
=
(
)
(
)
2
2
4
3
2
1
2
2
4
2
3
2
2
2
1
2
4
3
2
ˆ
m
a
a
a
a
m
a
a
a
a
m
E
+
+
+
+
+
+
+
=
(
)
(
)
(
)
(
)
=
+
+
+
+
−
+
+
+
+
+
+
+
=
−
2
4
3
2
1
2
2
2
4
3
2
1
2
2
4
2
3
2
2
2
1
2
2
4
3
2
ˆ
m
a
a
a
a
m
m
a
a
a
a
m
a
a
a
a
m
m
E
[
]
1
2
2
2
2
2
2
2
2
2
2
5
4
3
2
4
3
2
1
4
3
4
2
3
2
4
1
3
1
2
1
2
4
2
3
2
2
2
1
2
+
−
−
−
−
+
+
+
+
+
+
+
+
+
=
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
m
)
ˆ
(a
f
=
0
2
2
2
2
10
0
2
2
2
2
8
0
2
2
2
2
6
0
2
2
2
2
4
3
2
1
4
4
4
2
1
3
3
4
3
1
2
2
4
3
2
1
1
=
−
+
+
+
=
∂
∂
=
−
+
+
+
=
∂
∂
=
−
+
+
+
=
∂
∂
=
−
+
+
+
=
∂
∂
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
1
2
1
2
5
,
0
0
2
4
a
a
a
a
=
=
−
=
+
+
=
+
+
=
+
+
2
10
2
3
2
2
8
3
2
2
2
5
4
3
1
4
3
1
4
3
1
a
a
a
a
a
a
a
a
a
1
4
3
5
,
2
1
a
a
a
−
−
=
(
)
(
)
=
+
−
−
+
=
+
−
−
+
2
10
5
,
2
1
2
3
2
2
5
,
2
1
8
3
4
1
4
1
4
1
4
1
a
a
a
a
a
a
a
a
=
−
=
+
0
8
2
6
6
17
4
1
4
1
a
a
a
a
4
4
1
17
6
17
6
17
6
6
a
a
a
−
=
−
=
0
8
17
6
17
6
2
4
4
=
−
−
a
a
17
12
17
12
8
4
=
+
a
37
3
148
12
12
8
17
17
17
12
4
=
=
+
⋅
=
a
37
12
37
3
17
6
17
6
1
=
−
=
a
37
4
37
12
2
5
37
3
1
3
=
−
−
=
a
37
6
2
=
a
( )
1
)
0
(
32
,
0
ˆ
=
≈
f
a
f
→
to jest minimum
Zadanie 8
(
)
)
1
(
ln
Y
N
M
M
ODP
=
( )
(
)
=
>
>
+
≤
⋅
=
=
−
)
(
)
(
1
)
1
(
d
X
P
d
X
e
E
d
X
P
e
E
M
d
X
Y
Y
∫
∞
−
−
−
−
−
−
+
=
+
−
=
+
−
=
d
d
d
d
x
d
x
d
e
e
e
dx
e
e
e
2
2
2
2
2
1
2
1
2
1
( )
1
)
(
−
=
t
e
λ
N
e
t
M
(
)
d
d
e
e
e
e
ODP
2
2
3
1
1
3
−
−
=
=
−
+
Zadanie 9
(
)
2
2
2
2
1
1
)
3
(
2
)
2
(
3
2
...
,
...
3
cov
σ
n
σ
σ
n
σ
X
X
X
X
n
n
+
=
+
−
+
=
+
+
+
+
2
2
2
)
8
(
)
1
(
9
var
σ
n
σ
n
σ
U
+
=
−
+
=
2
2
2
)
3
(
4
)
1
(
var
σ
n
σ
σ
n
V
+
=
+
−
=
8
3
)
8
)(
3
(
)
3
(
)
,
(
2
2
+
+
=
+
+
+
=
n
n
n
n
σ
σ
n
V
U
corr
Zadanie 10
(
) (
)
(
)
...
)
;
0
(
3
4
1
,...,
)
(
,...,
,...,
4
:
4
2
4
4
4
1
4
1
4
1
θ
χ
e
θ
θ
x
x
f
θ
f
θ
x
x
f
x
x
θ
f
x
θ
−
=
=
(
)
( )
∫
∫
∞
∞
−
−
−
−
=
=
=
=
0
2
2
2
44
2
4
1
max
3
2
2
1
3
4
3
4
)
(
3
4
...
x
x
x
θ
θ
e
e
e
θ
χ
e
x
x
f
(
)
)
;
0
(
2
3
2
)
;
0
(
3
4
...
max
max
max
max
2
2
2
2
4
1
θ
χ
e
e
e
θ
χ
e
x
x
θ
f
x
x
θ
x
x
θ
−
−
−
=
=
(
)
∫
∞
−
−
−
>
→
>
=
=
<
=
>
3
max
6
2
2
2
max
4
1
2
2
ln
3
2
1
2
3
jezeli
...
3
max
max
x
e
e
θ
d
e
e
x
x
x
θ
P
x
x
θ
(
)
∫
∞
−
−
>
=
=
=
>
=
>
max
max
max
max
2
1
1
2
3
dla
...
3
2
2
2
2
max
4
1
x
x
x
x
θ
e
e
θ
d
e
e
x
x
x
θ
P
Z tego:
−
>
=
2
2
ln
3
4
:
4
x
K