eigenvalue ppt

background image

Eigenvalue Problems

1.

Eigenvalues and eigenvectors

2.

Vector spaces

3.

Linear transformations

4.

Matrix diagonalization

background image

The Eigenvalue Problem

Consider a nxn matrix A

Vector equation: Ax = x

» Seek solutions for x and 
»  satisfying the equation are the eigenvalues
» Eigenvalues can be real and/or imaginary;

distinct and/or repeated

» x satisfying the equation are the eigenvectors

Nomenclature

» The set of all eigenvalues is called the spectrum
» Absolute value of an eigenvalue:

» The largest of the absolute values of the

eigenvalues is called the spectral radius

2

2

b

a

ib

a

j

j

background image

Determining Eigenvalues

Vector equation

» Ax = x (A-x = 0
» A- is called the characteristic matrix

Non-trivial solutions exist if and only if:

» This is called the characteristic equation

Characteristic polynomial

» nth-order polynomial in 
» Roots are the eigenvalues {

1

, 

2

, …, 

n

}

0

)

det(

2

1

2

22

21

1

12

11

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

I

A

background image

Eigenvalue Example

Characteristic matrix

Characteristic equation

Eigenvalues: 

1

= -5, 

2

= 2

4

3

2

1

1

0

0

1

4

3

2

1

I

A

0

10

3

)

3

)(

2

(

)

4

)(

1

(

2

I

A

background image

Eigenvalue Properties

Eigenvalues of A and A

T

are equal

Singular matrix has at least one zero

eigenvalue

Eigenvalues of A

-1

: 1/

1

, 1/

2

, …, 1/

n

Eigenvalues of diagonal & triangular matrices

are equal to the diagonal elements

Trace

Determinant

n

j

j

Tr

1

)

(

A

n

j

j

1

A

background image

Determining Eigenvectors

First determine eigenvalues: {

1

, 

2

, …,

n

}

Then determine eigenvector

corresponding to each eigenvalue:

Eigenvectors determined up to scalar

multiple

Distinct eigenvalues

» Produce linearly independent eigenvectors

Repeated eigenvalues

» Produce linearly dependent eigenvectors
» Procedure to determine eigenvectors more

complex (see text)

» Will demonstrate in Matlab

0

)

(

0

)

(

k

k

x

I

A

x

I

A

background image

Eigenvector Example

Eigenvalues

Determine eigenvectors: Ax = x

Eigenvector for 

1

= -5

Eigenvector for 

1

= 2



3

1

or

9487

.

0

3162

.

0

0

3

0

2

6

1

1

2

1

2

1

x

x

x

x

x

x

1

2

or

4472

.

0

8944

.

0

0

6

3

0

2

2

2

2

1

2

1

x

x

x

x

x

x

2

5

4

3

2

1

2

1

A

0

)

4

(

3

0

2

)

1

(

4

3

2

2

1

2

1

2

2

1

1

2

1

x

x

x

x

x

x

x

x

x

x

background image

Matlab Examples

>> A=[ 1 2; 3 -4];
>> e=eig(A)
e =
2
-5
>> [X,e] = eig(A)
X =
0.8944 -0.3162
0.4472 0.9487
e =
2 0
0 -5

>> A=[2 5; 0 2];
>> e=eig(A)
e =
2
2
>> [X,e]=eig(A)
X =
1.0000 -1.0000
0 0.0000
e =
2 0
0 2

background image

Vector Spaces

Real vector space V

» Set of all n-dimensional vectors with real

elements

» Often denoted R

n

» Element of real vector space denoted

Properties of a real vector space

» Vector addition

» Scalar multiplication

V

x

0

a

a

w

v

u

w

v

u

a

0

a

a

b

b

a

)

(

)

(

)

(

a

a

a

a

a

a

a

b

a

b

a

1

)

(

)

(

)

(

)

(

k

c

k

c

ck

k

c

c

c

c

background image

Vector Spaces cont.

Linearly independent vectors

» Elements:
» Linear combination:
» Equation satisfied only for c

j

= 0

Basis

» n-dimensional vector space V contains

exactly n linearly independent vectors

» Any n linearly independent vectors form a

basis for V

» Any element of V can be expressed as a

linear combination of the basis vectors

Example: unit basis vectors in R

3

0

2

1

(m)

(2)

(1)

a

a

a

m

c

c

c

V

(m)

(2)

(1)

a

a

a

,

,

,

3

2

1

3

2

1

3

3

2

1

1

0

0

0

1

0

0

0

1

c

c

c

c

c

c

c

c

c

)

(

(2)

(1)

a

a

a

x

background image

Inner Product Spaces

Inner product

Properties of an inner product space

Two vectors with zero inner product are called

orthogonal

Relationship to vector norm

» Euclidean norm

» General norm

» Unit vector: ||a|| = 1

n

k

n

n

k

k

T

b

a

b

a

b

a

b

a

1

2

2

1

1

)

,

(

b

a

b

a

b

a

0

if

only

and

if

0

)

,

(

0

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

2

1

2

1

a

a

a

a

a

a

c

c

a

c

b

c

a

c

b

a

q

q

q

q

2

2

2

2

1

)

,

(

n

T

a

a

a

a

a

a

a

a

b

a

b

a

b

a

b

a

)

,

(

background image

Linear Transformation

Properties of a linear operator F

» Linear operator example: multiplication by a matrix

» Nonlinear operator example: Euclidean norm

Linear transformation

Invertible transformation

» Often called a coordinate transformation

)

(

)

(

)

(

)

(

)

(

x

x

x

v

x

v

cF

c

F

F

F

F

Ax

y

A

y

x

tion

Transforma

Operator

,

Elements

xn

m

m

n

R

R

R

y

A

x

Ax

y

A

y

x

1

x

tion

Transforma

Inverse

tion

Transforma

,

,

Dimensions

n

n

n

n

R

R

R

background image

Orthogonal Transformations

Orthogonal matrix

»

A square matrix satisfying: A

T

= A

-1

»

Determinant has value +1 or -1

»

Eigenvalues are real or complex conjugate pairs

with absolute value of unity

»

A square matrix is orthonormal if:

Orthogonal transformation

»

y = Ax where A is an orthogonal matrix

»

Preserves the inner product between any two

vectors

»

The norm is also invariant to orthogonal

transformation

b

a

v

u

Ab

v

Aa

u

 ,

k

j

k

j

k

T

j

if

1

if

0

a

a

background image

Similarity Transformations

Eigenbasis

» If a nxn matrix has n distinct eigenvalues,

the eigenvectors form a basis for R

n

» The eigenvectors of a symmetric matrix

form an orthonormal basis for R

n

» If a nxn matrix has repeated eigenvalues,

the eigenvectors may not form a basis for
R

n

(see text)

Similar matrices

» Two nxn matrices are similar if there exists

a nonsingular nxn matrix P such that:

» Similar matrices have the same eigenvalues
» If x is an eigenvector of A, then y = P

-1

x is

an eigenvector of the similar matrix

AP

P

A

1

ˆ

background image

Matrix Diagonalization

Assume the nxn matrix A has an eigenbasis

Form the nxn modal matrix X with the

eigenvectors of A as column vectors: X = [x

1

,

x

2

, …, x

n

]

Then the similar matrix D = X

-1

AX is diagonal

with the eigenvalues of A as the diagonal

elements

Companion relation: XDX

-1

= A

n

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

0

0

0

0

0

0

2

1

1

2

1

2

22

21

1

12

11

AX

X

D

A

background image

Matrix Diagonalization

Example





2

0

0

5

2

15

4

5

1

3

2

1

7

1

1

3

2

1

4

3

2

1

1

3

2

1

7

1

1

3

2

1

7

1

1

3

2

1

1

2

,

2

3

1

,

5

4

3

2

1

1

1

1

2

1

2

2

1

1

AX

X

D

AX

X

D

X

x

x

X

x

x

A

background image

Matlab Example

>> A=[-1 2 3; 4 -5 6; 7 8 -9];
>> [X,e]=eig(A)
X =
-0.5250 -0.6019 -0.1182
-0.5918 0.7045 -0.4929
-0.6116 0.3760 0.8620
e =
4.7494 0 0
0 -5.2152 0
0 0 -14.5343
>> D=inv(X)*A*X
D =
4.7494 -0.0000 -0.0000
-0.0000 -5.2152 -0.0000
0.0000 -0.0000 -14.5343


Document Outline


Wyszukiwarka

Podobne podstrony:
03 Sejsmika04 plytkieid 4624 ppt
Choroby układu nerwowego ppt
10 Metody otrzymywania zwierzat transgenicznychid 10950 ppt
10 dźwigniaid 10541 ppt
03 Odświeżanie pamięci DRAMid 4244 ppt
Prelekcja2 ppt
2008 XIIbid 26568 ppt
WYC4 PPT
rysunek rodziny ppt
1 GEN PSYCH MS 2014id 9257 ppt

więcej podobnych podstron