2. Obliczenie przybliżonych obserwacji: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Długości : |
|
|
|
|
|
dł.obliczona |
|
|
|
|
|
|
|
|
|
ΔX1-2 = |
-1349,384 |
Δy1-2 = |
467,943 |
|
d1-2o = |
1428,21841141507 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kąty: |
ΔX-ΔX |
ΔY-ΔY |
|
Azymuty |
|
|
α=A2-A1 |
|
|
|
|
|
|
|
|
|
-7923,628 |
8657,755 |
|
A10-2 = |
147,1833 |
|
α1 = |
278,55710 |
g |
|
|
|
|
|
|
|
-1216,756 |
-2265,777 |
|
A10-20 = |
268,6262 |
|
|
|
|
|
|
|
|
|
|
|
5357,488 |
-10455,589 |
|
A1-20 = |
330,1453 |
|
α2 = |
387,08398 |
g |
|
|
|
|
|
|
|
6574,244 |
-8189,812 |
|
A1-10 = |
343,0613 |
|
|
|
|
|
|
|
|
|
|
|
-1349,384 |
467,943 |
|
A1-2 = |
178,7493 |
|
α3 = |
164,31208 |
g |
|
|
|
|
|
|
|
6574,244 |
-8189,812 |
|
A1-10 = |
343,0613 |
|
|
|
|
|
|
|
|
|
|
|
2351,213 |
726,569 |
|
A20-30 = |
19,0801 |
|
α4 = |
111,06518 |
g |
|
|
|
|
|
|
|
-5357,488 |
10455,589 |
|
A20-1 = |
130,1453 |
|
|
|
|
|
|
|
|
|
|
|
-9058,085 |
10196,963 |
|
A30-2 = |
146,2390 |
|
α5 = |
72,84118 |
g |
|
|
|
|
|
|
|
-2351,213 |
-726,569 |
|
A30-20 = |
219,0801 |
|
|
|
|
|
|
|
|
|
|
|
7923,628 |
-8657,755 |
|
A2-10 = |
347,1833 |
|
α5 = |
387,87147 |
g |
|
|
|
|
|
|
|
6706,872 |
-10923,532 |
|
A2-20 = |
335,0547 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Wyrazy wolne (macierz L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kąty: |
dane-obliczone |
|
Długości: |
dana-obl. |
|
|
|
|
|
|
|
|
|
|
|
α1o = |
-1367948,0 |
cc |
d1o = |
0,0216 |
m |
|
|
|
|
|
|
|
|
|
|
α2o = |
-2573641,8 |
cc |
|
|
|
|
|
|
|
|
|
|
|
|
|
α3o = |
-878037,8 |
cc |
|
|
|
|
|
|
|
|
|
|
|
|
|
α4o = |
-785058,8 |
cc |
|
|
|
|
|
|
|
|
|
|
|
|
|
α5o = |
535107,2 |
cc |
|
|
|
|
|
|
|
|
|
|
|
|
|
α6o = |
-3491081,7 |
cc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.Obliczenie macierzy współczynników A (obliczenia pomocnicze dla zestawienia równań obserwacyjnych) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
ΔX |
Δy |
d |
dx1 |
dy1 |
dx2 |
dy2 |
|
|
|
|
|
|
|
|
d1-2 |
-1349,384 |
467,943 |
1428,21841141507 |
0,9448 |
-0,32764 |
-0,9448 |
0,32764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla kątów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
ΔXL |
ΔyL |
ΔXP |
ΔyP |
dL |
dP |
dx1 |
dy1 |
dx2 |
dy2 |
|
|
|
|
|
α1 |
-1216,756 |
-2265,777 |
-7923,628 |
8657,755 |
2571,8165909071 |
11736,2942329514 |
0 |
0 |
-40,0150567398644 |
-36,6220139060967 |
|
|
|
|
|
α2 |
6574,244 |
-8189,812 |
5357,488 |
-10455,589 |
10502,0809731634 |
11748,2772782679 |
-0,953960239104677 |
13,235655275651 |
0 |
0 |
|
|
|
|
|
α3 |
-1349,384 |
467,943 |
6574,244 |
-8189,812 |
1428,21841141507 |
10502,0809731634 |
-193,315964598168 |
-459,086738965084 |
146,044034960902 |
421,13993386306 |
|
|
|
|
|
α4 |
2351,213 |
726,569 |
-5357,488 |
10455,589 |
2460,91549695027 |
11748,2772782679 |
-48,2258898763702 |
-24,7111498263727 |
0 |
0 |
|
|
|
|
|
α5 |
-9058,085 |
10196,963 |
-2351,213 |
-726,569 |
13639,1700000621 |
2460,91549695027 |
0 |
0 |
34,8959544549457 |
30,9984964747863 |
|
|
|
|
|
α6 |
7923,628 |
-8657,755 |
6706,872 |
-10923,532 |
11736,2942329514 |
12818,1778494218 |
0 |
0 |
-2,30932493859396 |
10,6355279969086 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Obliczenie wag obserwacji macierz P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P1 = |
0,0025 |
k aty |
|
|
|
|
|
|
|
|
|
|
|
|
|
P2 = |
0,0025 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P3 = |
0,0025 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P4 = |
0,01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P5 = |
0,01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P6 = |
0,0025 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P7 = |
2500 |
długości |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. Zestawienie równań obserwacyjnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx1 |
dy1 |
dx2 |
dy2 |
|
L |
|
P |
|
|
|
|
|
|
|
α1 |
0 |
0 |
-40,0150567 |
-36,6220139 |
|
-1367948,0 |
|
0,0025 |
0 |
0 |
0 |
0 |
0 |
0 |
|
α2 |
-0,9539602 |
13,2356553 |
0 |
0 |
|
-2573641,8 |
|
0 |
0,0025 |
0 |
0 |
0 |
0 |
0 |
|
α3 |
-193,3159646 |
-459,086739 |
146,044035 |
421,1399339 |
|
-878037,8 |
|
0 |
0 |
0,0025 |
0 |
0 |
0 |
0 |
|
α4 |
-48,2258899 |
-24,7111498 |
0 |
0 |
|
-785058,8 |
|
0 |
0 |
0 |
0,01 |
0 |
0 |
0 |
|
α5 |
0 |
0 |
34,8959545 |
30,9984965 |
|
535107,2 |
|
0 |
0 |
0 |
0 |
0,01 |
0 |
0 |
|
α6 |
0 |
0 |
-2,3093249 |
10,635528 |
|
-3491081,7 |
|
0 |
0 |
0 |
0 |
0 |
0,0025 |
0 |
|
d1-2 |
0,9448 |
-0,32764 |
-0,9448 |
0,32764 |
|
0,0216 |
|
0 |
0 |
0 |
0 |
0 |
0 |
2500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. Rozwiązanie układu równań metoda najmniejszych kwadratów x ̂=(ATPA)-1 ATPL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
-0,9539602 |
-193,3159646 |
-48,2258899 |
0 |
0 |
0,9448 |
|
|
|
|
|
|
|
|
AT = |
0 |
13,2356553 |
-459,086739 |
-24,7111498 |
0 |
0 |
-0,32764 |
|
|
|
|
|
|
|
|
|
-40,0150567 |
0 |
146,044035 |
0 |
34,8959545 |
-2,3093249 |
-0,9448 |
|
|
|
|
|
|
|
|
|
-36,6220139 |
0 |
421,1399339 |
0 |
30,9984965 |
10,635528 |
0,32764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
-0,0023849005 |
-0,4832899115 |
-0,482258899 |
0 |
0 |
2362 |
|
|
|
|
|
|
|
|
ATP = |
0 |
0,03308913825 |
-1,1477168475 |
-0,247111498 |
0 |
0 |
-819,1 |
|
|
|
|
|
|
|
|
|
-0,10003764175 |
0 |
0,3651100875 |
0 |
0,348959545 |
-0,00577331225 |
-2362 |
|
|
|
|
|
|
|
|
|
-0,09155503475 |
0 |
1,05284983475 |
0 |
0,309984965 |
0,02658882 |
819,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2348,3048950897 |
-540,128084363237 |
-2302,19920875025 |
570,352998616353 |
|
|
|
|
|
|
|
|
|
|
|
ATPA = |
-540,128084363237 |
801,815874486567 |
606,26848055362 |
-751,719321292066 |
|
|
|
|
|
|
|
|
|
|
|
|
-2302,19920875025 |
606,26848055362 |
2301,13337116286 |
-605,703842967099 |
|
|
|
|
|
|
|
|
|
|
|
|
570,352998616353 |
-751,719321292067 |
-605,703842967099 |
725,011817560673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,221928637989618 |
-0,291838371014895 |
0,222175980582744 |
-0,291561262821594 |
|
|
|
|
|
|
|
|
|
|
|
(ATPA)-1 = |
-0,291838371014893 |
0,428933939084846 |
-0,291616467503149 |
0,4306903653 |
|
|
|
|
|
|
|
|
|
|
|
|
0,222175980582744 |
-0,291616467503151 |
0,222987298495338 |
-0,290847957282891 |
|
|
|
|
|
|
|
|
|
|
|
|
-0,291561262821592 |
0,430690365 |
-0,290847957282888 |
0,434314829834667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
809137,302009557 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ATPL = |
1116558,55000174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23100,6845529064 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-726130,289661407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zaokrąglone do 4 miejsc po przecinku |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70559,9924756788 |
70559,9925 |
X1 |
|
|
|
|
|
|
|
|
|
|
|
|
X^ = |
-76681,3148071063 |
-76681,3148 |
Y1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
70508,6840992006 |
70508,6841 |
X2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-77110,0239024393 |
-77110,0239 |
Y2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8. Obliczenie wektora odchyłek losowych v=Ax ̂-L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v |
|
|
|
|
|
|
|
|
|
|
|
|
|
2515,37511256523 |
|
1370463,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-1082238,87527174 |
|
1491402,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-613735,891490854 |
|
264301,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-1507934,97141755 |
|
-722876,2 |
|
|
|
|
|
|
|
|
|
|
|
|
Ax^ = |
70173,0261258949 |
|
-464934,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-982933,278151581 |
|
2508148,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-91,9860938982238 |
|
-92,0077 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9. Obliczenie estymatora wariancji resztowej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vT = |
1370463,37511257 |
1491402,92472826 |
264301,908509146 |
-722876,171417552 |
-464934,173874105 |
2508148,42184842 |
-92,0076938982238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vTP = |
3426,15843778141 |
3728,50731182064 |
660,754771272864 |
-7228,76171417552 |
-4649,34173874105 |
6270,37105462105 |
-230019,234745559 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vTPv= |
33566092369,9222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-u = |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
δo2 = |
11188697456,6407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
δo (m0) = |
105776,639465625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10. Obliczenie ostatecznych (wyrównanych) współrzędnych punktów wyznaczanych (współrzędne dane w zadaniu + poprawki z macierzy X) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1o = |
69831,5765 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y1o = |
-70021,2698 |
|
|
|
|
|
|
|
|
|
|
|
|
|
X^ = |
X2o = |
68430,8841 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y2o = |
-69982,0359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11. Obliczenie uzgodnionych obserwacji (kąty i długość podana w zadaniu + poprawki z macierzy V) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α^1 |
278,808637511256 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
α^2 |
278,860092472826 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
α^3 |
102,938490850915 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
α^4 |
-39,7283171417552 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
α^5 |
79,8584826125895 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
α^6 |
289,578142184842 |
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d^1-2 |
1336,2323 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12. Kontrola - obliczenie uzgodnionych obserwacji na podstawie wyrównanych współrzędnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kontrola poprawek, oblicza czy obliczenia wyszly dobrze, w zaznaczonym obszarze mają być zera |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Długości : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ΔX1-2 = |
-1400,6924 |
Δy1-2 = |
39,233899999992 |
|
d1-2o = |
1401,24177011926 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kąty: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ΔX10-2 = |
62585,0561 |
-68452,2689 |
A10-2 = |
347,1514295169 |
|
α1 = |
78,5252749755021 |
g |
|
|
|
|
|
|
|
ΔX10-20 = |
-1216,756 |
-2265,777 |
A10-20 = |
268,626154541398 |
|
|
|
|
|
|
|
|
|
|
|
ΔX1-20 = |
-65202,5045 |
66225,7258 |
A1-20 = |
149,504376077318 |
|
α2 = |
1,66878314005072 |
g |
|
|
|
|
|
|
|
ΔX1-10 = |
-63985,7485 |
68491,5028 |
A1-10 = |
147,835592937267 |
|
|
|
|
|
|
|
|
|
|
|
ΔX1-2 = |
-1400,6924 |
39,233899999992 |
A1-2 = |
198,217271159175 |
|
α3 = |
349,618321778093 |
g |
|
|
|
|
|
|
|
ΔX1-10 = |
-63985,7485 |
68491,5028 |
A1-10 = |
147,835592937267 |
|
|
|
|
|
|
|
|
|
|
|
ΔX20-30 = |
2351,213 |
726,569 |
A20-30 = |
19,0801464963474 |
|
α4 = |
330,42422958097 |
g |
|
|
|
|
|
|
|
ΔX20-1 = |
65202,5045 |
-66225,7258 |
A20-1 = |
349,504376077318 |
|
|
|
|
|
|
|
|
|
|
|
ΔX30-2 = |
61450,5991 |
-66913,0609 |
A30-2 = |
347,292524743627 |
|
α5 = |
271,78762175272 |
g |
|
|
|
|
|
|
|
ΔX30-20 = |
-2351,213 |
-726,569 |
A30-20 = |
219,080146496347 |
|
|
|
|
|
|
|
|
|
|
|
ΔX2-10 = |
-62585,0561 |
68452,2689 |
A2-10 = |
147,1514295169 |
|
α5 = |
1,68080077692821 |
g |
|
|
|
|
|
|
|
ΔX2-20 = |
-63801,8121 |
66186,4919 |
A2-20 = |
148,832230293829 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kontrola |
|
|
|
tu mają być same zera |
|
|
|
|
|
|
|
|
|
|
|
278,808637511256 |
BŁĄD |
78,5252749755021 |
|
200,2834 |
|
|
|
|
|
|
|
|
|
|
|
278,860092472826 |
BŁĄD |
1,66878314005072 |
|
277,1913 |
|
|
|
|
|
|
|
|
|
|
|
102,938490850915 |
BŁĄD |
349,618321778093 |
|
-246,6798 |
|
|
|
|
|
|
|
|
|
|
|
-39,7283171417552 |
BŁĄD |
330,42422958097 |
|
-370,1525 |
|
|
|
|
|
|
|
|
|
|
|
79,8584826125895 |
BŁĄD |
271,78762175272 |
|
-191,9291 |
|
|
|
|
|
|
|
|
|
|
|
289,578142184842 |
BŁĄD |
1,68080077692821 |
|
287,8973 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1336,23230610178 |
BŁĄD |
1401,24177011926 |
|
-65,0095 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uzgodnione |
|
obliczone |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13. Wyznaczenie macierzy wariancyjno-kowariancyjnej dla uzgodnionych współrzędnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2483092387,43017 |
-3265291239,52452 |
2485859828,8728 |
-3262190759,78693 |
|
|
2483092387430174 |
-3265291239524523 |
2485859828872804 |
-3,26219075978693E+015 |
|
|
|
|
|
Cov(X^) = |
-3265291239,5245 |
4799212073,3055 |
-3262808428,26704 |
4818864194,77743 |
[m2] |
= |
-3265291239524500 |
4799212073305504 |
-3262808428267037 |
4818864194777426 |
[mm2] |
|
|
|
|
|
2485859828,8728 |
-3262808428,26706 |
2494937419,53798 |
-3254209799,92023 |
|
|
2,4858598288728E+015 |
-3262808428267061 |
2,49493741953798E+015 |
-3,25420979992023E+015 |
|
|
|
|
|
|
-3262190759,7869 |
4818864194,77742 |
-3254209799,9202 |
4859417231,95249 |
|
|
-3262190759786903 |
4818864194777424 |
-3,2542097999202E+015 |
4859417231952488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14. Wyznaczenie macierzy wariancyjno-kowariancyjnej dla modelowych (uzgodnionych) obserwacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19996173348,7699 |
-45915047265,0068 |
19340654220,4299 |
-47744255756,96 |
|
|
|
|
|
|
|
|
|
|
|
|
-45587040610,9874 |
66635674597,785 |
-45556819006,0007 |
66892825569,2306 |
|
|
|
|
|
|
|
|
|
|
|
|
8236705878,73633 |
-19119254669,1287 |
11248718422,5806 |
-10406373486,7139 |
|
|
|
|
|
|
|
|
|
|
|
|
-39060239127,2181 |
38877527343,3233 |
-39255054574,4434 |
38242377431,2803 |
|
|
|
|
|
|
|
|
|
|
|
A cov(X^) = |
-14376557367,8635 |
35518730420,7594 |
-13812388420,5474 |
37075870945,2485 |
|
|
|
|
|
|
|
|
|
|
|
|
-40435779167,7806 |
58786049819,0797 |
-40371860551,8065 |
59197495754,893 |
|
|
|
|
|
|
|
|
|
|
|
|
-1598837,49377131 |
4093061,003010 |
-5759253,06890106 |
5746386,21798039 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
974573422730,945 |
-626791292209,865 |
-69015751002,8867 |
170280356700,569 |
-805089555300,872 |
-552449223315,838 |
20012602,1520996 |
|
|
|
|
|
|
|
|
|
-626791292209,879 |
925455042037,915 |
-260913353980,93 |
551831464362,385 |
483828336084,767 |
816646015836,018 |
55699571,8930244 |
|
|
|
|
|
|
|
|
|
-69015751002,8693 |
-260913353980,923 |
4445378320765,51 |
75236295346,5669 |
69952834152,0906 |
-136654222142,757 |
8938939,18234682 |
|
|
|
|
|
|
|
|
|
170280356700,552 |
551831464362,4 |
75236295346,5391 |
923006389582,434 |
-184386395369,571 |
497380550936,571 |
-24038882,6433067 |
|
|
|
|
|
|
|
|
cov(L^) = |
-805089555300,872 |
483828336084,754 |
69952834152,1113 |
-184386395369,585 |
667299777870,991 |
426218756070,619 |
-22845299,980648 |
|
|
|
|
|
|
|
|
|
-552449223315,851 |
816646015836,018 |
-136654222142,75 |
497380550936,558 |
426218756070,63 |
722828366462,66 |
74415838,0375481 |
|
|
|
|
|
|
|
|
|
20012602,1520789 |
55699571,8930418 |
8938939,18267918 |
-24038882,6433178 |
-22845299,9806436 |
74415838,0375591 |
4472456,10881539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15. Wyznaczenie odchyleń standardowych i przedziałów ufności dla wyrównanych współrzędnych punktów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,1824 |
wartość z rozkłądu studenta dla 3 obserwacji nadliczbowych dla wartosci odchylenia standardowego 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odchylenie standardowe uzgodnionych współrzędnych |
|
|
|
|
odchylenie razy wartość z rozkladu studenta |
|
|
|
|
|
|
|
|
|
|
|
49830637,0361666 |
|
|
|
158581019,303896 |
|
|
|
|
|
|
|
|
|
|
|
69276345,6982649 |
|
|
|
220465042,550158 |
|
|
|
|
|
|
|
|
|
|
|
49949348,5396755 |
|
|
|
158958806,792663 |
|
|
|
|
|
|
|
|
|
|
|
69709520,3824591 |
|
|
|
221843577,665138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16. Wyznaczenie odchyleń standardowych i przedziałów ufności dla uzgodnionych obserwacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odchylenie standardowe uzgodnionych obserwacji |
|
|
|
|
odchylenie razy wartość z rozkladu studenta |
|
|
|
|
|
|
|
|
|
|
|
987204,853478215 |
cc |
|
odchylenie razy wartość z rozkladu studenta |
3141680,72570907 |
|
|
|
|
|
|
|
|
|
|
|
962005,739087826 |
cc |
|
|
3061487,0640731 |
|
|
|
|
|
|
|
|
|
|
|
2108406,58336231 |
cc |
|
|
6709793,1108922 |
|
|
|
|
|
|
|
|
|
|
|
960732,215334967 |
cc |
|
|
3057434,202082 |
|
|
|
|
|
|
|
|
|
|
|
816884,188775246 |
cc |
|
|
2599652,24235834 |
|
|
|
|
|
|
|
|
|
|
|
850193,134800946 |
cc |
|
|
2705654,63219053 |
|
|
|
|
|
|
|
|
|
|
|
2114818,22122266 |
|
|
|
6730197,50721901 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obliczanie parametrów elipsy błędów dla punktów 1 i 2, a i b półosie elipsy, β azymut półosi a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2483092387430174 |
-3265291239524523 |
2485859828872804 |
-3,26219075978693E+015 |
|
|
|
|
|
|
|
|
|
|
|
|
-3265291239524500 |
4799212073305504 |
-3262808428267037 |
4818864194777426 |
|
|
|
|
|
|
|
|
|
|
|
|
2,4858598288728E+015 |
-3262808428267061 |
2,49493741953798E+015 |
-3,25420979992023E+015 |
|
|
|
|
|
|
|
|
|
|
|
|
-3262190759786903 |
4818864194777424 |
-3,2542097999202E+015 |
4859417231952488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cov(X1,Y1) = |
2483092387430174 |
-3265291239524523 |
|
cov(X2,Y2) = |
2,49493741953798E+015 |
-3,25420979992023E+015 |
|
|
|
|
|
|
|
|
|
|
-3265291239524500 |
4799212073305504 |
|
|
-3,2542097999202E+015 |
4859417231952488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a12 = |
7105719949252896 |
|
|
a22 = |
7139484738111412 |
|
|
|
|
|
|
|
|
|
|
a1 = |
8916487577729,65 |
|
|
a2 = |
8937647046680,26 |
|
|
|
|
|
|
|
|
|
|
b12 = |
176584511482783 |
|
|
b22 = |
214869913379056 |
|
|
|
|
|
|
|
|
|
|
b1 = |
1405613984886,87 |
|
|
b2 = |
1550520703935,57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2β1 = |
278,302855488084 |
|
|
2β2 = |
277,8157139032 |
|
|
|
|
|
|
|
|
|
|
β1 = |
139,151427744042 |
|
|
β2 = |
138,9078569516 |
|
|
|
|
|
|
|
|
|
|