Wyrównać przedstawiona na szkicu sieć metodą pośredniczącą.Obliczyc najprawdopodobniejsze wartości współrzędnych punktów 1 i 2, ich błędy średnie oraz średni błąd odległości między punktami A i 2 po wyrównaniu. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przyjąć: |
błąd średni obserwacji kąta mα=6" |
|
|
|
|
|
|
|
|
|
|
błąd średni obserwanej długości md= 0,0446 m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
Y |
|
|
|
|
|
|
|
|
A |
14788,16 |
21532,51 |
|
|
|
|
|
|
|
|
B |
15247,88 |
23507,23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje w stopniach |
|
|
|
|
|
|
|
|
α 1 = |
92,96861111 |
1,62260836487568 |
|
92o58’07” |
|
|
|
|
|
|
α 2 = |
52,97638889 |
0,924612411947444 |
|
52o58’35” |
|
|
|
|
|
|
α 3 = |
36,89055556 |
0,643861657411901 |
|
36o53’26” |
|
|
|
|
|
|
α 4 = |
35,63944444 |
0,622025649059587 |
|
35o38’22” |
|
|
|
|
|
|
α 5 = |
55,92833333 |
0,976133561761384 |
|
55o55’42” |
|
|
|
|
|
|
α 6 = |
51,54138889 |
0,899566937181326 |
|
51o32’29” |
|
|
|
|
|
|
α 7 = |
34,05444444 |
0,594362180415476 |
|
34o03’16” |
|
|
|
|
|
|
|
|
|
|
|
d 8 = |
1986,69 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mα = |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
md = |
0,0446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przybliżone wartości współrzędnych punktów 1 i 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15247,88 |
23507,23 |
|
14788,16 |
21532,51 |
|
|
|
|
|
|
|
-1 |
-0,0518585 |
|
1 |
1,4795264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
Y |
|
|
|
|
|
|
|
|
P1 |
16154,64 |
|
21138,77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
γ = |
52,9769444500001 |
|
Σ = |
180,000000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15247,88 |
23507,23 |
|
16154,64 |
21138,77 |
|
|
|
|
|
|
|
|
-1 |
1,3323323 |
|
1 |
0,7942572 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
Y |
|
|
|
|
|
|
|
|
|
P2 |
16700,28 |
|
23049,03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
γ = |
91,56805555 |
|
Σ = |
180,000000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Oblicznie kątów i długości ze współrzędnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AL. |
BL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AP |
BP |
|
|
|
|
|
|
|
tgα 1 = |
1366,48 |
-393,74 |
|
αprz = |
92,96872064 |
|
139,37 |
-40,16 |
|
|
|
|
|
|
2368,46 |
459,72 |
1974,72 |
0 |
αob = |
92,96861111 |
|
23,07 |
99,08 |
|
|
|
|
|
|
393,74 |
|
|
|
|
αprz - αob = |
0,39 |
" |
|
|
|
|
|
|
|
|
|
tgα 2 = |
-906,76 |
2368,46 |
|
αprz = |
52,9768568224628 |
|
-29,08 |
75,96 |
|
|
|
|
|
|
|
-1366,48 |
393,74 |
0 |
αob = |
52,97638889 |
|
-139,37 |
40,16 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
1,68 |
" |
|
|
|
|
|
|
|
|
|
tgα 3 = |
545,64 |
1910,26 |
|
αprz = |
36,8905168439364 |
|
28,52 |
99,83 |
|
|
|
|
|
|
|
-906,76 |
2368,46 |
0 |
αob = |
36,89055556 |
|
-29,08 |
75,96 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
-0,14 |
" |
|
|
|
|
|
|
|
|
|
tgα 4 = |
-1912,12 |
-1516,52 |
|
αprz = |
35,6404657584136 |
|
-66,22 |
-52,52 |
|
|
|
|
|
|
|
-545,64 |
-1910,26 |
0 |
αob = |
35,63944444 |
|
-28,52 |
-99,83 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
3,68 |
" |
|
|
|
|
|
|
|
|
|
tgα 5 = |
-1452,40 |
458,20 |
|
αprz = |
55,9275885302861 |
|
-129,16 |
40,75 |
|
|
|
|
|
|
|
-1912,12 |
-1516,52 |
0 |
αob = |
55,92833333 |
|
-66,22 |
-52,52 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
-2,68 |
" |
|
|
|
|
|
|
|
|
|
tgα 6 = |
906,76 |
-2368,46 |
|
αprz = |
51,5414288673639 |
|
29,08 |
-75,96 |
|
|
|
|
|
|
|
1452,40 |
-458,20 |
0 |
αob = |
51,54138889 |
|
129,16 |
-40,75 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
0,14 |
" |
|
|
|
|
|
|
|
|
|
tgα 7 = |
-459,72 |
-1974,72 |
|
αprz = |
34,0544225337651 |
|
-23,07 |
-99,08 |
|
|
|
|
|
|
|
906,76 |
-2368,46 |
0 |
αob = |
34,05444444 |
|
29,08 |
-75,96 |
|
|
|
|
|
|
|
|
|
|
|
αprz - αob = |
-0,08 |
" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Azymut |
A1-2 = |
74,0587240740888 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cosA1-2 = |
0,2747 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sinA1-2 = |
0,9615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Δx |
Δy |
|
|
|
|
cosA1-2 |
sinA1-2 |
|
|
|
|
|
|
|
|
|
|
|
dprz = |
1986,66 |
|
|
|
|
|
|
|
|
|
|
1 - 2 |
545,64 |
1910,26 |
|
dob = |
1986,69 |
|
0,2747 |
0,9615 |
|
|
|
|
|
|
|
|
|
|
|
dprz - dob = |
-0,03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Równania poprawk w postaci form |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dxL |
|
dyL |
dxP |
|
dyP |
dxC |
dyC |
|
|
|
|
|
|
|
|
AL. |
|
BL |
- AP |
|
- BP |
- (AL.-AP) |
- (BL.-BP) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V1 = |
dx1 |
|
dy1 |
0 |
|
0 |
0 |
0 |
|
0,39 |
|
|
|
|
|
139,37 |
|
-40,16 |
- |
|
- |
- |
- |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2 = |
0 |
|
0 |
0 |
|
0 |
dx1 |
dy1 |
|
1,68 |
|
|
|
|
|
-29,08 |
|
75,96 |
139,37 |
|
-40,16 |
-110,30 |
-35,80 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V3 = |
dx2 |
|
dy2 |
0 |
|
0 |
dx1 |
dy1 |
|
-0,14 |
|
|
|
|
|
28,52 |
|
99,83 |
29,08 |
|
-75,96 |
-57,60 |
-23,88 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V4 = |
0 |
|
0 |
dx1 |
|
dy1 |
dx2 |
dy2 |
|
3,68 |
|
|
|
|
|
-66,22 |
|
-52,52 |
28,52 |
|
99,83 |
37,70 |
-47,31 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V5 = |
0 |
|
0 |
0 |
|
0 |
dx2 |
dy2 |
|
-2,68 |
|
|
|
|
|
-129,16 |
|
40,75 |
66,22 |
|
52,52 |
62,94 |
-93,27 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V6 = |
dx1 |
|
dy1 |
dx2 |
|
dy2 |
0 |
0 |
|
0,14 |
|
|
|
|
|
29,08 |
|
-75,96 |
-129,16 |
|
40,75 |
- |
- |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V7 = |
0 |
|
0 |
dx1 |
|
dy1 |
0 |
0 |
|
-0,08 |
|
|
|
|
|
- |
|
- |
-29,08 |
|
75,96 |
- |
- |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V8 = |
dx1 |
|
dy1 |
dx2 |
dy2 |
|
-0,03 |
|
|
|
|
|
|
|
|
-0,27 |
|
-0,96 |
0,27 |
0,96 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Azumut |
AA -2 = |
38,4182583156752 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cosAA -2 = |
0,7835 |
|
f = |
0 |
|
0 |
dx2 |
dy2 |
|
|
|
|
|
|
|
sinAA -2 = |
0,6214 |
|
-0,7835 |
|
-0,6214 |
0,7835 |
0,6214 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Postać algebraiczna równań poprawek |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,0143 |
|
-0,0063 |
-0,0059 |
|
0,0043 |
1 |
|
|
|
|
|
|
|
|
|
dx1 |
|
dy1 |
dx2 |
|
dy2 |
1 |
|
|
|
|
|
|
|
1,85 |
V1 |
-40,16 |
|
-139,37 |
0 |
|
0 |
0,39 |
|
|
|
|
|
|
|
1,50 |
V2 |
-35,80 |
|
110,30 |
0 |
|
0 |
1,68 |
|
|
|
|
|
|
|
-0,88 |
V3 |
-23,88 |
|
57,60 |
99,83 |
|
-28,52 |
-0,14 |
|
|
|
|
|
|
|
2,55 |
V4 |
99,83 |
|
-28,52 |
-47,31 |
|
-37,70 |
3,68 |
|
|
|
|
|
|
|
-2,40 |
V5 |
0 |
|
0 |
-93,27 |
|
-62,94 |
-2,68 |
|
|
|
|
|
|
|
1,73 |
V6 |
-75,96 |
|
-29,08 |
40,75 |
|
129,16 |
0,14 |
|
|
|
|
|
|
|
-1,35 |
V7 |
75,96 |
|
29,08 |
0 |
|
0 |
-0,08 |
|
|
|
|
|
|
|
-0,017 |
V8 |
-0,2747 |
|
-0,9615 |
0,2747 |
|
0,9615 |
-0,03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,0143 |
|
-0,0063 |
-0,0059 |
|
0,0043 |
1 |
|
|
|
|
|
|
|
|
|
dx1 |
|
dy1 |
dx2 |
|
dy2 |
1 |
|
|
|
|
|
|
|
0,3 |
V1 |
-6,693 |
|
-23,229 |
0 |
|
0 |
0,066 |
|
|
|
|
|
|
|
0,3 |
V2 |
-5,966 |
|
18,383 |
0 |
|
0 |
0,281 |
|
|
|
|
|
|
|
-0,1 |
V3 |
-3,980 |
|
9,599 |
16,639 |
|
-4,753 |
-0,023 |
|
|
|
|
|
|
|
0,4 |
V4 |
16,639 |
|
-4,753 |
-7,886 |
|
-6,284 |
0,613 |
|
|
|
|
|
|
|
-0,4 |
V5 |
0 |
|
0 |
-15,544 |
|
-10,490 |
-0,447 |
|
|
|
|
|
|
|
0,3 |
V6 |
-12,659 |
|
-4,847 |
6,791 |
|
21,527 |
0,024 |
|
|
|
|
|
|
|
-0,2 |
V7 |
12,659 |
|
4,847 |
0 |
|
0 |
-0,013 |
|
|
|
|
|
|
|
-0,4 |
V8 |
-6,158 |
|
-21,559 |
6,158 |
|
21,559 |
-0,673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx1 |
dy1 |
dx2 |
|
dy2 |
1 |
|
|
|
100 * τ |
|
|
f |
Σ |
|
|
731,509 |
184,004 |
-321,314 |
|
-490,922 |
11,846 |
|
100 |
0 |
0 |
|
0 |
0 |
215,123 |
|
|
|
1504,021 |
31,516 |
|
-584,890 |
14,821 |
|
0 |
100 |
0 |
|
0 |
0 |
1249,471 |
|
|
|
|
664,702 |
|
412,502 |
-2,252 |
|
0 |
0 |
100 |
|
0 |
0,7835 |
885,939 |
|
|
|
|
|
|
1100,336 |
-13,038 |
|
0 |
0 |
0 |
|
100 |
0,6214 |
524,610 |
|
|
dx1 |
dy1 |
dx2 |
|
dy2 |
1 |
|
|
|
100 * 1/R |
|
|
φ |
S |
Σ1 |
|
27,046 |
6,803 |
-11,880 |
|
-18,151 |
0,438 |
|
3,697 |
0 |
0 |
|
0 |
0 |
7,954 |
7,954 |
|
|
38,180 |
2,942 |
|
-12,085 |
0,310 |
|
-0,659 |
2,619 |
0 |
|
0 |
0 |
31,308 |
31,308 |
|
|
|
22,692 |
|
10,243 |
0,090 |
|
2,021 |
-0,340 |
4,407 |
|
0 |
0,0345 |
39,147 |
39,147 |
|
|
|
|
|
22,802 |
-0,099 |
|
1,686 |
1,541 |
-1,980 |
|
4,386 |
0,0117 |
28,347 |
28,347 |
|
-0,0143 |
-0,0063 |
-0,0059 |
|
0,0043 |
1 |
|
-0,0143 |
-0,0063 |
-0,0059 |
|
0,0043 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kontrola warunku V^2=min |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2 |
0,8062 |
|
|
|
0,000000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,000000 |
|
|
|
|
|
|
|
|
|
|
L2 – Λ2 = |
0,8062 |
|
|
V · Λ= |
0,000000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,000000 |
|
|
|
|
|
|
|
|
|
|
L2 – Λ2 = |
0,8062 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obliczamy najprawdopodobniejsze wartości punktów 1 i 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 = |
16154,626 |
Y1 = |
|
21138,764 |
|
|
|
|
|
|
|
|
|
|
|
X2 = |
16700,274 |
Y2 = |
|
23049,034 |
|
|
|
|
|
|
|
|
|
|
|
XA = |
14788,16 |
YA = |
|
21532,51 |
|
|
|
|
|
|
|
|
|
|
|
XB = |
15247,88 |
YB = |
|
23507,23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
αi w = αi ob. + Vi |
|
|
Kontrola ostateczna |
|
|
|
|
|
|
|
|
|
di w = di ob. + di |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 1 = |
92,96912 |
tgα 1 = |
|
1366,466 |
-393,746 |
|
α 1 = |
92,96911 |
|
|
|
|
|
|
|
|
|
|
459,719999999999 |
1974,72 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 2 = |
52,97681 |
tgα 2 = |
|
-906,746 |
2368,466 |
|
α 2 = |
52,97681 |
|
|
|
|
|
|
|
|
|
|
-1366,466 |
393,746 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 3 = |
36,89031 |
tgα 3 = |
|
545,648 |
1910,270 |
|
α 3 = |
36,89032 |
|
|
|
|
|
|
|
|
|
|
-906,746 |
2368,466 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 4 = |
35,64015 |
tgα 4 = |
|
-1912,114 |
-1516,524 |
|
α 4 = |
35,64016 |
|
|
|
|
|
|
|
|
|
|
-545,648 |
-1910,270 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 5 = |
55,92767 |
tgα 5 = |
|
-1452,394 |
458,196 |
|
α 5 = |
55,92767 |
|
|
|
|
|
|
|
|
|
|
-1912,114 |
-1516,524 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 6 = |
51,54187 |
tgα 6 = |
|
906,746 |
-2368,466 |
|
α 6 = |
51,54185 |
|
|
|
|
|
|
|
|
|
|
1452,394 |
-458,196 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α 7 = |
34,05407 |
tgα 7 = |
|
-459,719999999999 |
-1974,72 |
|
α 7 = |
34,05408 |
|
|
|
|
|
|
|
|
|
|
906,746 |
-2368,466 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Δx |
Δy |
|
|
|
|
|
|
|
|
|
|
d = |
1986,673 |
|
d1-2 = |
545,648 |
1910,270 |
= |
1986,671 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mo = |
0,4489 |
|
|
mX2 = |
0,0217 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mX1 = |
0,0206 |
m |
|
mY2 = |
0,0197 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mY1 = |
0,0137 |
m |
|
md = |
0,0164 |
m |
|
|
|
|
|
|
|
|
|