Równanie różniczkowe linii ugięcia belki


Linia ugięcia belki. Równanie różniczkowe linii ugięcia

Analizując odkształcenie belki poddanej czystemu zginaniu można stwierdzić, że w skutek działania momentu gnącego zachodzi wzajemny obrót względem osi obojętnej, uprzednio równoległych przekrojów. Odkształcenia te powodują zakrzywienie (ugięcie) pierwotnie prostej osi pręta.

0x01 graphic

0x01 graphic

W układzie prostokątnym, w którym oś x pokrywa się z nieodkształconą osią pręta wartość ugięcia osi określa równanie:

0x01 graphic
(1)

Krzywiznę belki określa wzór:

0x01 graphic
(2)

Z kolei znany z geometrii różniczkowej wzór na krzywiznę linii płaskiej ma postać:

0x01 graphic
(3)

Porównując prawe strony równań (2) i (3) otrzymujemy:

0x01 graphic
(4)

Równanie (4) jest równaniem różniczkowym linii ugięcia, jego całkowanie jest kłopotliwe toteż w praktyce technicznej stosuje się pewne uproszczenie. Jeżeli naprężenia w danym przekroju belki nie przekraczają granicy proporcjonalności to kąt nachylenia stycznej do linii ugięcia jest mały a zatem można przyjąć, że wielkość (dy/dx)2 jest znacznie mniejsz od jedności, zatem: 0x01 graphic
. Przy takich założeniach równanie (4) przyjmuje postać:

0x01 graphic
(5)

Przyjęcie w równaniu (5) znaku + lub - jest zależne od umowy dotyczącej znaku momentu gnącego i ore4ntacji układu osi. Stosując przyjęte wcześniej umowy przyjmuje się następującą postać równania linii ugięcia:

0x01 graphic
(6)

0x01 graphic
(7)

Przyjmując, że moment gnący Mg oraz siła tnąca są określone w postaci funkcji za punkt wyjścia do wyznaczenia przemieszczeń przyjmuje się równanie (7). Całkując równanie dwukrotnie otrzymujemy:

0x01 graphic
(8)

0x01 graphic
(9)

Różniczkowe równanie linii ugięcia można sformułować dla przedziału belki, dla którego określona jest funkcja Mg. Liczba równań odpowiada liczbie przedziałów ciągłości. Stałe C i D wyznacza się z określonych warunków, którym muszą odpowiadać przemieszczenia na brzegach przedziałów (warunki brzegowe). Są one zależne od rodzaju podpór i ogólnego warunku ciągłości linii ugięcia. Warunek ten dla punktów stanowiących granicę przedziałów ciągłości wyraża się jako warunek nieciągłości przemieszczeń kątowych (kątów ugięcia).



Wyszukiwarka

Podobne podstrony:
Rownania rozniczkowe linii ugiecia belki, metoda Clebscha Zad 1
Obliczanie ramy metodą przemieszczeń obliczenie momentów oraz sił tnących korzystając z równania róż
Wyzn odksztalcen belek zginany Row rozniczk linii ugiecia belki metoda Clebscha Zad 1
# Projekt nr 1 TEMAT Wyznaczenie linii ugięcia belki
# Projekt nr 1 TEMAT Wyznaczenie linii ugięcia belki
Niejednorodne liniowe rownania rozniczkowe
04 Rozdział 03 Efektywne rozwiązywanie pewnych typów równań różniczkowych
Bołt W Równania Różniczkowe
raport3 Równania różniczkowe zwyczajne
Metody Komputerowe i Numeryczne, Równania różniczkowe zwyczajne
9 Rownania rozniczkowe id 4845 Nieznany (2)
anch1012 rownania rozniczkowe
Kochański P, Kortyka P Sposoby rozwiązywania prostych równań różniczkowych zwyczajnych
Szereg Fouriera przyklady, SiMR, Studia inżynierskie, Semestr II 2, Równania różniczkowe, 2012 13
RÓWNANIE RÓŻNICZKOWE RZĘDU I O ZMIENNYCH ROZDZIELONYCH
ćw równania różniczkowe II rzedu
sciaga rownanie rozniczkowe zupelne, AGH, I & II, Matematyka, Teoria

więcej podobnych podstron