F
iz
y
k
a
s
ta
ty
s
ty
c
z
n
a
5
R
o
zk
#a
d
M
ax
w
el
la
(
ro
zk
#a
d
p
r!
d
k
o
%c
i
cz
$s
te
k
)
(
)
F
υ
-
f
u
n
k
c
ja
r
o
zk
$a
d
u
p
r%
d
k
o
#c
i
c
z&
st
ec
ze
k
g
a
zu
.
3
/2
2
2
(
)
ex
p
4
2
2
m
m
F
k
T
k
T
υ
υ
π
υ
π
=
−
(r
o
zk
#a
d
M
ax
w
el
la
)
(
)
F
d
υ
υ
m
a
zn
ac
ze
n
ie
p
ra
w
d
o
p
o
d
o
b
ie
's
tw
a
te
g
o
,
"e
d
an
a
cz
$s
te
cz
k
a
m
a
m
o
d
u
#
p
r!
d
k
o
%c
i
za
w
ar
ty
w
p
rz
ed
zi
al
e
(
,
)
d
υ
υ
υ
+
)r
ed
n
ie
p
r!
d
k
o
%c
i
cz
$s
te
cz
ek
g
az
u
(
)
0
(
)
8
/
F
d
k
T
m
υ
υ
υ
υ
π
∞
=
=
∫
2
2
0
(
)
3
/
F
d
k
T
m
υ
υ
υ
υ
∞
=
=
∫
,
2
sr
.k
w
.
3
/
k
T
m
υ
υ
=
=
P
r!
d
k
o
%&
n
aj
b
ar
d
zi
ej
p
ra
w
d
o
p
o
d
o
b
n
a
p
ra
w
.
(
)
0
d
F
d
υ
υ
υ
υ
=
=
→
2
2
p
ra
w
.
p
ra
w
.
p
ra
w
.
ex
p
2
0
2
m
m
k
T
k
T
υ
υ
υ
−
−
=
p
ra
w
.
2
/
k
T
m
υ
=
,
p
ra
w
.
(
)
(4
/
)
/(
2
)
/
F
e
m
k
T
m
T
υ
π
=
"
F
iz
y
k
a
s
ta
ty
s
ty
c
z
n
a
6
W
#a
%c
iw
o
%c
i
ro
zk
#a
d
u
M
ax
w
el
la
p
ra
w
.
sr
.k
w
.
:
:
2
:
8
/
:
3
(:
(,
(3
:(
,2
2
υ
υ
υ
π
=
=
p
ra
w
.
2
/
k
T
m
υ
=
p
ra
w
.
(
)
/
F
m
T
υ
"
T
le
n
(
32
g/
m
o
l,
3
00
K
T
µ
=
=
)
(
)
(
)
8
/
8
/
5
0
0
m
/s
k
T
m
R
T
υ
π
π
µ
=
=
≈
W
o
d
ó
r
(
2
g
/m
ol
,
30
0
K
T
µ
=
=
)
2
0
0
0
m
/s
υ
≈