Srebro-Status • Strategia: No-Limit BSS
Koncepcje matematyczne w no-limit Hold’em -
wartość oczekiwana i zakresy
autorstwa hasenbraten
Znajdziesz ten i wiele innych artykułów na www.PokerStrategy.com
Darmowe artykuły o strategii, filmiki i treningi na żywo
Indywidualne konsultacje z profesjonalnymi trenerami pokera
$50+$100 Otrzymaj Twój kapitał startowy za darmo, po rejestracji
Ponad 2.000.000 zarejestrowanych użytkowników na PokerStrategy.com. Dołącz do nich już teraz!
Odkryj największą szkołę pokera na świecie. Bez żadnych kosztów i zobowiązań:
www.pokerstrategy.com
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
1 z 12
2011-08-20 19:28
Wstęp
W tym artykule
Dlaczego matematyka jest ważna w pokerze
Co kryje się pod pojęciem equity
Jak możesz obliczyć swoją wartość oczekiwaną
W tej serii artykułów zaznajomisz się z podstawowymi oraz zaawansowanymi koncepcjami matematycznymi w
no-limit Hold’em. Z jednej strony poznasz i nauczysz się rozumieć związki matematyczne, a z drugiej strony
poznasz też bezpośrednie możliwości ich zastosowania. Chodzi w większości o dokładne obliczenie lub oszacowanie
wyników różnych możliwych decyzji w ramach jednej ręki.
Często mówi się na przykład w filmiku, na forum oceny rąk lub też w tym artykule: „To jest +EV”. Dokładniej
wyjaśnimy to później, ale co to oznacza, jest jasne: to zagranie mogłoby być dobre/poprawne, mogłoby przynieść
zysk.
Jak dotąd, wszystko w porządku. Problem pojawia się wtedy, gdy mamy dwie różne opinie. Gracz A mówi: „To
jest +EV”, a gracz B: „Nie, to jest –EV, lub maksymalnie +-0 EV”. Jak postępować dalej?
W niektórych sytuacjach żadna koncepcja matematyczna nie odpowie na to pytanie. Często jest jednak możliwe
albo wyjaśnienie problemu, albo przynajmniej stworzenie solidnej podstawy do dyskusji. Szczególnie takimi
przypadkami zajmiemy się w matematycznych koncepcjach w no-limit Hold’em.
Część pierwsza – EV i zakresy
Pierwsza część zawiera wprowadzenie w matematyczne pojęcia i definicje. Czysto matematyczna podstawa jest
dość łatwa i nie powinna nikogo odstraszyć. Chodzi w niej najwyżej o materiał podstawowej matematyki na
poziomie liceum, a do tego nie o jego najtrudniejszą część.
Po wyjaśnieniu pojęć matematycznych, wprowadzimy i wyjaśnimy jeszcze jedno ważne pokerowe pojęcie: equity.
Już przy jego pomocy można przekalkulować pierwsze analizy i dojść do ciekawych wyników. Na koniec pokażemy
kalkulacje kilku łatwych przykładów, aby zademonstrować zastosowanie przedstawionych koncepcji.
Podstawy matematyczne
Wartość oczekiwana
W tej części artykułu pojawią się wzory. Zostaną one przedstawione w możliwie poprawnej matematycznej formie
oraz wyczerpująco wyjaśnione. Nie trzeba znać ich wszystkich na pamięć.
Zacznijmy od wartości oczekiwanej (zwanej także EV, dla expected value). Oczywiście nasuwa się pytanie: czym
jest wartość oczekiwana?
Chodzi tu o pojęcie ze stochastyki, części matematyki zajmującej się prawdopodobieństwem. Mamy tu tak zwane
doświadczenia losowe, np. rzut monetą. Mają one możliwe wyniki xi (i jest w tym wypadku indeksem do
numeracji wyników), w tym przykładzie orzeł lub reszka.
Pojawiają się one z przynależnym do nich prawdopodobieństwem p(xi) (i służy tu znowu do numeracji), na
przykład 50%. Wartość oczekiwana doświadczenia losowego jest wartością, która przy częstym jego powtarzaniu,
występuje jako średni wynik.
W istotnym tu dyskretnym przypadku wartość oczekiwana E(X) wynosi, zakładając, że mielibyśmy N różnych
możliwych wyników:
Jeśli komuś te matematyczne rozważania wydają się zbyt skomplikowane, może przeskoczyć do bardziej
konkretnych, pokerowych rozdziałów (zaczynając od zakresu rąk). Jednak dla lepszego zrozumienia zalecamy
także lekturę rozdziału matematycznego.
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
2 z 12
2011-08-20 19:28
Należy przy tym uważać na to, że pojedyncze wyniki mogą zostać ponownie złożone w całość, na przykład jeśli w
grze bierze udział trzech graczy.
Tutaj przypadki „nikt nie sprawdza“, „gracz A sprawdza”, „gracz B sprawdza”, „gracze A i B sprawdzają” należy
rozpatrywać osobno oraz dla każdego z nich przeprowadzić analizę możliwych wyników z przynależnym
prawdopodobieństwem. Do tego należy zwrócić uwagę na kolejny rozdział o grafach, które są przejrzystym
zilustrowaniem takich obliczeń.
Wartość oczekiwaną wyrażoną w pieniądzach nazywamy w pokerze EV. Aby móc to logicznie zrozumieć,
proponujemy przypisanie wynikom wartości liczbowych, np.: reszce odpowiada 1, a orzełkowi -1.
W przykładzie z rzutem monetą można zapisać po prostu cały wynik. Możliwymi wynikami są więc x1 = 1, x2 = -1
oraz przynależne im prawdopodobieństwa:
p(x1) = 0,5 , p(x2) = 0,5
p(x) oznacza mniej więcej prawdopodobieństwo pojawienia się x. Dla wartości oczekiwanej wynika z tego:
EV=x1 • p(x1)+x2 • p(x2) = 0,5 • 1 + 0,5 • (−1) = 0
Mamy nadzieję, że nie jest to dla nikogo zaskakujący wynik. Wybrany przykład był jednak bardzo łatwy. Weźmy
więc nieco trudniejszy, aby wyjaśnić tę koncepcję. Kasyno proponuje następującą grę:
Za 10 żetonów gracz może raz rzucić kością do gry. Jeśli wyrzuci 1, 2 lub 3 to traci on swoje żetony, za 4 dostanie
on z powrotem 5 żetonów, za 5 20 żetonów, a za 6 30 żetonów. Czy ta gra jest +EV?
Aby określić EV, musimy spojrzeć na wszystkie możliwe wyniki. W tym przypadku istnieje sześć różnych wyników
odpowiadających każdej liczbie na kostce. Trzy liczby dadzą ten sam wynik, więc mogą być traktowane łącznie.
Jako że każda liczba pojawia się z prawdopodobieństwem 1/6, daje nam to następujące równanie:
x1 = −10, p(x1) = 1/6 +1/6 + 1/6 = 1/2
jak i x2 = −5, p(x2) = 1/6 (gracz przegrywa połowę żetonów)
x3 = 10, p(x3) = 1/6
oraz
x4 = 20, p(x4) = 1/6
Zatem mamy już wszystkie potrzebne wartości. A teraz przy pomocy kalkulatora, długopisu i kartki lub w pamięci
możemy szybko obliczyć wartość oczekiwaną. W tym wypadku wygląda to tak:
Powinno być jasne, że żadne kasyno na świecie nie pozwoli na grę +EV przeciwko kasynu.
Prosty przykład pokerowy
Dla dalszego zilustrowania, jeszcze jeden przykład pokerowy.
FR , 100BB Stacks
Preflop: Hero is BU with AA
6 folds,
CO raises 4BB,
Hero raises 12BB
, 2 folds,
CO is All-In
.
Jaka wspaniała sytuacja. Masz dwa asy i możesz wszystkie twoje pieniądze wsunąć na środek przed flopem, lepiej
prawie być nie może. To, że w tej sytuacji sprawdzasz, jest jasne (EV wynosi więcej niż 0).
Mógłbyś postawić oczywiście pytanie, ile wynosi dokładnie wartość oczekiwana. Aby to zrobić, musisz najpierw
określić poszczególne wyniki. Możesz wygrać całą pulę, czyli 100BB od CO, jak i twoje 12BB oraz 1,5BB od graczy
na blindach, czyli 113,5BB.
Ten wynik to x1 = 113,5BB
Drugą możliwością jest strata 88BB, które musisz zainwestować w sprawdzenie, czyli x2 = -88BB.
Teraz musisz jeszcze określić prawdopodobieństwo tych dwóch zdarzeń. Zakładasz, że CO wejdzie za wszystko z
QQ, KK, AA i AKs, a więc twój udział w puli wynosi 77,3%, a udział przeciwnika 22,7%.
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
3 z 12
2011-08-20 19:28
Wartość oczekiwana wynika więc w tym wypadku z:
EV = x1p(x1) + x2p(x2) = (113,5 • 0,773 − 88 • 0,227)BB = (87,73 − 19,976)BB = 67,75BB.
Grafy
W przypadkach, w których pojedyncze wyniki wartości oczekiwanej są jednocześnie wartościami oczekiwanymi
konkretnych sytuacji, proponujemy przedstawienie ich jako grafów. W ten sposób możesz przejrzyście spisać
wszystkie wyniki i prawdopodobieństwa oraz obliczyć wartość oczekiwaną.
Tak więc wartość oczekiwana całej sytuacji jest sumą poszczególnych wyników końcowych pomnożoną przez
przynależne do nich prawdopodobieństwo.
Ważne:
Prawdopodobieństwo dla zdarzenia na pierwszym poziomie jest podane bezpośrednio, prawdopodobieństwo dla
zdarzenia drugiego poziomu wynika z pomnożenia prawdopodobieństwa krawędzi pierwszego poziomu przez jego
wynik, pomnożony przez prawdopodobieństwo z drugiej krawędzi.
Dla przejrzystości na końcu każdej krawędzi zapisujemy jej wynik, oraz przy każdej krawędzi
prawdopodobieństwo dla każdej z nich. Wartość oczekiwana jest sumą wszystkich wyników pomnożoną przez ich
prawdopodobieństwo.
Dla gry w kości według następujących zasad przykładowy graf wyglądałby tak:
Gracz nie płaci nic, żeby wziąć udział w grze. Jeśli wyrzuci on 1, 2 lub 3, to przegra. Jeśli wyrzuci 4 lub 5, to
wygrywa jedną kostkę czekolady. Jeśli wyrzuci 6, to może rzucać jeszcze raz, a wyrzucając kolejną 6, wygrywa 3
kostki czekolady, jeśli mu się to nie uda, to dostaje 2 kawałki.
Wartość oczekiwana wynosi więc:
0,5 • 0+0,33 • 1+0,16 • 0,16 • 3+0,16 • 0,83 • 2 = 0,5 • 0+0,33 • 1+0,16 • (0,16 • 3+0,83 • 2) = 0,694.
Ten sposób zapisywania obliczeń wartości oczekiwanej sugerujemy szczególnie wtedy, gdy musimy wziąć pod
uwagę wiele przypadków. Taki zapis nie różni się fundamentalnie od typowego rachunku.
Wariancja
Następujący akapit jest dość matematyczny, ale mimo wszystko do zrozumienia. Jeśli ci to pomoże, przyjrzyj się
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
4 z 12
2011-08-20 19:28
najpierw przykładowi.
Kolejnym ważnym pojęciem jest wariancja. Nie pomaga ci ona obliczyć wartości oczekiwanych, jest jednak
ciągłym towarzyszem gry, dlatego to pojęcie powinno zostać wyjaśnione w tym artykule. Matematycznie patrząc,
wariancja jest miarą średniego odchylenia wyniku doświadczenia losowego od jego wartości oczekiwanej.
W pokerze określamy w ten sposób fakt, że każdy, nawet dobrzy gracze, doświadczają swingów w obie strony, co
jest właściwie efektem wariancji. Można ją w interesującym nas przypadku przedstawić następującym wzorem:
Na początek nie wygląda on zbyt pięknie, ale taki jest. Wariancja mierzy średniokwadratowe odchylenie od
wartości oczekiwanej E(X). Wynika z niej standardowe odchylenie:
a więc pierwiastek wariancji. Nie jest on, jakby się mogło wydawać, bez sensu, ale dba on o absolutnie pozytywny
znak liczby odchylenia standardowego, które jest znowu wymierną wartością i wyraża bezpośrednio średnie
odchylenie od wartości oczekiwanej.
Dla lepszego zrozumienia, obliczymy przykład z pokera. Gracz A dysponuje bankrollem w wysokości 2000 $.
Gracz B proponuje mu następującą umowę:
A dostanie AA, a B dowolną rękę i karty zostaną rozdane do showdownu. Gracz A może postawić (scenariusz 1)
cały swój bankroll, lub 10 razy po 200 $. Bez oceny chcemy zobaczyć, co możemy obliczyć.
Wartość oczekiwana wynosi dla scenariusza 1:
0,85 • 2000$ + 0,15 • (−2000$) = 1400$
W scenariuszu 2 zostanie dziesięć razy przeprowadzone to samo doświadczenie, a wartość oczekiwana wynosi
więc:
10 • (0,85 • 200$ + 0,15 • (−200$)) = 1400$ jak w scenariuszu 1.
Konkretne standardowe odchylenia wynoszą (nie obliczaliśmy ich z powodu braku miejsca) dla scenariusza 1
1428,3
$, a dla scenariusza 2
451
$. Ryzyko całkowitej straty dla scenariusza 2 wynosi śmieszne 5,7665•
1010
−7
% = 0,00000057665 %, a dla scenariusza 1 jednak 15 %.
Im bardziej oddalone są możliwe wyniki od wartości oczekiwanej, tym większe będzie też średnie odchylenie od
niej. Gracz NL50 będzie raczej chcieć zaryzykować cały swój bankroll w scenariuszu 2 niż w scenariuszu 1.
Bardziej interesujące od bezpośredniego obliczenia odchylenia standardowego jest jednak następujące
rozważanie. Programy do analizy gry, takie jak Pokertracker, potrafią między innymi podać odchylenie
standardowe jako wartość wyrażoną w BB/100. Jeśli dysponujemy wystarczająco dużą bazą danych, to możemy
obliczyć symulacje, które na podstawie współczynnika wygranych oraz standardowego odchylenia symulują różne
grafy dla różnej liczby rąk.
Nie wchodząc w szczegóły, należy wspomnieć, że jako wynik matematycznych symulacji na podstawie
realistycznych standardowych odchyleń dla graczy NL BSS absolutnie możliwe są swingi do 60 stacków, i mogą
rzeczywiście się pojawić, nawet u graczy ze współczynnikiem wygranych wynoszącym 4BB/100.
Wraz z wyjaśnieniem pojęć wartości oczekiwanej, wariancji i odchylenia standardowego oraz wprowadzeniem
grafów, które pozwalają przejrzyście obliczyć wartość oczekiwaną, zamykamy matematyczną część tego artykułu.
Teraz po przedstawieniu equity i zakresu rąk poznasz pierwsze łatwe przykłady obliczeń wartości oczekiwanej.
Zakres rąk
Temat zakresu rąk omówimy wyczerpująco w drugim artykule z tej serii. Teraz podamy tylko krótkie
wyjaśnienie. Czym jest więc zakres rąk?
Zakresem rąk nazywamy zbiór rąk, których podczas gry gracz już dalej nie rozróżnia. Oznacza to, że każdą rękę z
tego zbioru grałby on dokładnie w ten sam sposób. Bardzo ważne jest, by mieć świadomość, iż każdy gracz w
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
5 z 12
2011-08-20 19:28
każdej sytuacji może grać nie jedną określoną rękę, a którąś z zakresu rąk.
Oznacza to, że szanse na wygraną należy rozpatrywać także przeciwko całemu zakresowi rąk. Dokładnie tak
samo, podejmując decyzję, zawsze musisz się zastanowić, jak gracz zareaguje na akcję, i z jaką częścią swojego
zakresu (właśnie nie zawsze tak samo, często dzieli on swój zakres w ten sposób, że z jedną częścią podjąłby on
decyzję A, a z inną częścią decyzję B).
Ogólnie zakresy rąk podawane są w taki sposób, że najsłabsza ręka danej kategorii ma znak +, karty w kolorze
lub nie rozróżniamy literami „o” lub „s”. Jeśli przy ręce nie ma litery, to możliwe są obydwie opcje. AK określa 16
możliwych kombinacji AK. QQ+, AQs+, AK określa QQ, KK, AA, jak i cztery kombinacje AQ w kolorze oraz
wszystkie kombinacje AK.
Equity
Equity
Na pewno słyszałeś już o equity. Także equity jest raczej matematycznym pojęciem. Wyraża ono
prawdopodobieństwo wygranej graczy w danej sytuacji.
Equity to część puli, która należy się ręce lub liczbie rąk w konkretnej sytuacji, porównując je do innej ręki lub
liczby rąk. Ta część puli bierze pod uwagę także sytuację podziału puli i dlatego z reguły różni się nieco od
dokładnego prawdopodobieństwa wygranej.
Jak można obliczyć equity swojej ręki?
Teoretycznie można obliczyć equity twojej ręki. A oto bardzo łatwy przykład, który można obliczyć z
akceptowalnym nakładem pracy:
Gracz A ma A
, K
Gracz B ma A , 2
Karty wspólne to 7 , 8 , K
Ile wynosi equity gracza A i B?
W tym przypadku powinieneś rozważyć wszystkie możliwe wyniki. Gracz B wygrywa, jeśli trafi kolor, a gracz A nie
trafi fulla, lub jeśli na turnie i riverze dojdzie dwójka.
Prawdopodobieństwo dwójki na turnie i riverze wynosi 3/45*2/44.
Obliczyliśmy to w następujący sposób:
W talii są jeszcze 3 dwójki, 2 , 2
, 2
. Prawdopodobieństwo tego, że jedna z nich dojdzie na turnie, jest liczbą
„oczekiwanych” kart podzieloną przez liczbę pozostałych kart. Jest ich 45. Znasz już 4 karty graczy A i B oraz 3
karty z flopa.
Na riverze zostaną 2 „oczekiwane” oraz 44 pozostałych kart, daje to więc 1/330 czyli 0,3 %.
Do tego dochodzi prawdopodobieństwo koloru. Kolor na turnie pojawi się z prawdopodobieństwem 9/45. Jeśli nie
jest to K , to gracz A nie ma już żadnych szans na wygraną, a więc najlepiej rozróżnimy to w ten sposób:
W 8/45=17,7% przypadków gracz B wygra bezpośrednio, w 1/45 przypadków gracz A może trafić fulla lub karetę
na riverze. To zdarzy się w 9/44=20,5 % przypadków dla 2xA, 1xK, 3x7, 3x8.
Dla gracza B dochodzi jeszcze prawdopodobieństwo wygranej 1/45 (prawdopodobieństwo K na turnie) * 35/44
(prawdopodobieństwo, że gracz A nie trafi fulla lub karety) =1,7 %.
Jak dotąd, gracz B ma więc equity wynoszące 19,7 %. Pozostaje jeszcze rozpatrzyć przypadek, że na turnie nie
pojawi się żaden . Jeśli na turnie dojdzie 7, 8, A lub K, to na riverze dla gracza B musi spaść , oprócz K . Jeśli
na turnie nie dojdzie żadna z tych kart, to wszystkie na riverze pomagają graczowi B.
W pierwszym przypadku equity dla gracza B wynosi 9 (A, 7, 8, K )/45 * 8/44 = 3,63%, a w drugim 24 (żaden
pik, A, 7, 8, K lub 2, ponieważ ten przypadek już uwzględniliśmy)/45 * 9/44=10,9 %. Razem daje to więc
graczowi B 35,7% equity.
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
6 z 12
2011-08-20 19:28
Jak widzisz, jest to bardzo drobiazgowe, choć był to łatwy przykład. Trudniejsze przypadki, takie jak obliczenie
equity przed flopem lub equity dla różnych zakresów, jest niepraktyczne. Używa się do tego różnych narzędzi.
Obliczają one equity w kilka sekund, w większości przez integrację numeryczną, także w trudnych przypadkach.
Narzędzie takie jak PokerStrategy.com Equilator, może obliczyć przy pomocy prostych metod equity dowolnych
sytuacji. Potrafi ono obliczać equity dla pojedynczych rąk, jak np. AA przeciwko KK, oraz dla zakresów, np. QQ+,
AK przeciwko JJ+, AQ, AK.
Można także ustawić różne karty wspólne, takie jak „martwe” karty, które nie powinny być brane pod uwagę. Aby
wyrobić sobie do tego wyczucie, zebraliśmy przykładowe equity w następującą tabelę:
Sytuacja
Equity
para vs. niższa para
80%
para vs. 2 overkarty
54%
para vs. over- & underkarta
70%
para vs. 2 underkarty
85%
QQ+, AK vs. 66
64%
flush draw vs. toppara
35%
flush draw + overkarta vs.
toppara
44%
trójka vs. flush draw
75%
trójka vs. flush draw +
gutshot
66%
Jak wykorzystywać equity w grze w pokera?
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
7 z 12
2011-08-20 19:28
Bardzo ważne jest, aby wyrobić sobie dobre wyczucie equity. Można wprawdzie w niewielu sytuacjach szybko
sprawdzić equity metodami szacunkowymi, często jednak nie ma na to czasu.
Dlatego nie pozostaje ci nic innego, jak zbieranie własnego doświadczenia. Equity powinieneś mieć w głowie i
szacować je dokładnie podczas gry. Możesz oczywiście sprawdzać decyzje po grze, aby poprawiać swoje wyczucie
equity. A teraz wróćmy do pojęcia z pierwszego rozdziału:
Equity jest bezpośrednio związane z wartością oczekiwaną.
Wybrane sytuacje gramy do showdownu i dajemy każdemu graczu procentowy udział w wygranej. Średnią
wygraną gracza przy częstych powtórzeniach jest właśnie equity.
Razem z equity, możesz w celach analitycznych przeprowadzać już swoje pierwsze podstawowe obliczenia
wartości oczekiwanej. W końcowej części artykułu zaprezentujemy na podstawie kilku przykładów, jak to zrobić.
Ogólnie o obliczeniach wartości oczekiwanej
Korzyści z obliczenia wartości oczekiwanej
Do czego służy obliczenie wartości oczekiwanej, szczególnie kiedy nie potrafisz ich przeprowadzić bezpośrednio
przy stole pokerowym? Służy ono właśnie, jak już na początku wspomnieliśmy, ocenie decyzji po fakcie. Jest to
ważne wtedy, kiedy jako gracz chcesz się rozwijać. Często gracze nie potrafią powiedzieć o pokerze nic poza
„wydaje mi się...”, co nie jest oparte na wiedzy.
Ten, kto chciałby to wiedzieć dokładnie, dokonuje obliczeń i w efekcie nauczy się więcej niż ktoś, kto ciągle polega
na swoich przypuszczeniach. Celem kalkulacji jest nie tylko obliczenie samej wartości oczekiwanej, ale także
wyrobienie sobie wyczucia tego, co się na nią składa. Ile wygrasz, jeśli przeciwnik spasuje, ile, jeśli trafisz, i tak
dalej.
Dalsze rozważania w kontekście equity
Często z obliczeniami łączą się określone pytania, np.: jak duże podbicie mogę sprawdzić w tej sytuacji? Jak duży
może być maksymalnie stack przeciwnika, żebym mógł jeszcze wejść za wszystko? Jakie mniej więcej musi on
grać ręce i jak to robi, żebym mógł zyskownie sprawdzić? I tak dalej. Możliwość odpowiedzenia na te pytania leży
w możliwej interpretacji wartości oczekiwanej.
Stawiasz proste pytanie, czyli „Czy mam dodatnią wartość oczekiwaną?”. A wynika to z porównania z pasem.
Wartość oczekiwana twoich akcji i pasu
Pas jest zawsze EV=0. Jest to także łatwe matematycznie. Jeśli zdecydowałeś się właśnie na pas, to jedynym
możliwym wynikiem jest „pas”. Przypisana temu kwota wynosi zero, pasowanie jest za darmo, a ponieważ jesteś
tego pewien, prawdopodobieństwo wynosi 1.
Wynika z tego EV = 0 * 1 = 0. Pas ma zawsze neutralną wartość oczekiwaną. Tak więc jest jasne, że każda
decyzja, którą powinieneś podjąć zamiast pasu, musi mieć wartość oczekiwaną wynoszącą zero lub więcej.
Wartość oczekiwana wynosząca zero będzie następnie miarą wszystkiego. Czyli naszym staraniem będzie EV> =
0. Podstawiając więc EV = 0 do wzoru, otrzymujemy równanie zamiast nierówności. Można je teraz rozwiązać, a
zastępując inne zmienne stałymi, możemy obliczyć tę, która nas interesuje. W praktyce wygląda to tak:
Znając dokładnie wielkość puli i zakładów, możesz np. obliczyć potrzebne equity i na odwrót. W ten sposób
możesz wyprowadzać kolejne warunki dla późniejszych akcji lub bezpośrednio wyrazić zalecenie co do zagrania.
Poprzez to, w konkretnej sytuacji otrzymasz np. warunek co do equity lub bardziej abstrakcyjnie, również warunki
co do gry przeciwników, aby został spełniony warunek EV (>) = 0. Równocześnie wiesz też, że twoja gra powinna
od tej wartości granicznej iść w kierunku +EV, a nie w kierunku –EV.
Sposoby łatwego obliczania EV
Do obliczeń wartości oczekiwanej najlepiej jest podchodzić systematycznie, tak jak we wstępie matematycznym.
Po pierwsze, potrzebujesz wszystkich możliwych wyników. W łatwych przypadkach będzie to najczęściej zysk lub
strata puli, lub konkretnej kwoty, którą musisz sprawdzić.
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
8 z 12
2011-08-20 19:28
Jest wiele równoważnych sposobów przedstawienia wartości oczekiwanej. W tym wypadku posłużymy się
następującym wzorem:
EV = equity * (wygrana + inwestycja) – inwestycja
„Wygraną” określamy wszystkie pieniądze, które możesz wygrać, a „inwestycją” kwotę, którą musisz zapłacić,
aby dostać szansę na wygraną.
Po nudnej teorii, obliczymy więc kilka przykładów:
Przykład 1
Full-ring, 100BB Stacks
Pre-flop: Hero is BU with A , 2
1 fold, UTG2 calls, 1 fold, MP1 calls, 2 folds, CO calls, Hero calls, SB calls, BB checks
Flop: 3 , 8 , T
(Pot: 6BB)
SB bets 5BB
,
BB raises 10BB
, UTG2 folds,
MP1 raises 15BB
, CO folds, Hero?
Pytanie brzmi: Czy możesz zagrać call?
Siedząc przy stole, będziesz musiał podjąć decyzję. Jednak przynajmniej po fakcie, możesz spróbować obliczyć
wartość oczekiwaną.
EV = equity * (wygrana + inwestycja) – inwestycja
W tym wypadku ważne jest tylko to, co bezpośrednio wygrasz. A więc pula wynosi (6+5+10+15) = 36BB.
Inwestycją będzie tu -15BB, które musiałbyś włożyć w sprawdzenie (przy czym Inwestycja będzie ujemną kwotą,
ponieważ tracisz te 15BB).
Pozostaje więc problem equity. Aby je poznać, potrzebujesz jednak wiedzy o rękach twoich przeciwników. Nie
zakładając niczego, możesz już obliczyć potrzebne equity dla wartości oczekiwanej wynoszącej zero, co da ci już
jakiś obraz sytuacji:
EV = 0 = Equity * (36BB + 15BB) - 15BB
15BB = Equity * ( 51BB )
15/51 = Equity
Potrzebujesz więc prawdopodobieństwa wygranej wynoszącego nieco mniej niż 33%, a dokładnie 29%. Jak dotąd,
wszystko gra, nauczyłeś się na początku, że equity topowego drawa do koloru znajduje się dokładnie w tym
rzędzie wielkości. Jeśli jeszcze założysz, że przy trafieniu na turnie możesz wygrać więcej pieniędzy, to
sprawdzenie jest więc w porządku. Ta sytuacja nadaje się jednoznacznie do sprawdzenia, nieprawdaż?
Nie.
Analiza nie uwzględnia dwóch istotnych faktów. Po pierwsze, nie możesz być pewien, że sprawdzając za 15BB,
zobaczysz kartę z turna. Często np. SB lub BB przebije jeszcze raz, a w takim wypadku będziesz musiał
przeprowadzić analizę od nowa. Dokładniej patrząc, musiałbyś obliczyć wartość oczekiwaną w bardziej
kompleksowy sposób przy pomocy następującego wzoru:
EV = P(nikt nie podbija) * (equity * (wygrana + inwestycja) - inwestycja) + P(ktoś podbija) * (wynik czyjegoś
podbicia)
P(ktoś podbija) określa tu prawdopodobieństwo kolejnego podbicia, wynik którego nie został jeszcze
przeanalizowany. Obliczenie go jest bardzo trudne, ponieważ musiałbyś zastanowić się znowu nad wszystkimi
możliwościami, wyprowadzając osobny graf. Da się to wprawdzie zrobić, jest to jednak bardzo niepraktyczne.
Jest jeszcze drugi problem: nie możesz być pewny, że otrzymasz cały twój udział z puli. Obliczenia equity w
Equilatorze wychodzą na początku z założenia, że dojdzie do showdownu. Może on cię jednak kosztować dużo
więcej niż inwestycja na flopie, także jeśli nie będzie przebicia, ponieważ na turnie po prostu zostanie postawiony
zakład.
Oznacza to w tym przykładzie, że zamiast liczyć equity od flopa do rivera, w tym wypadku powinieneś liczyć tylko
prawdopodobieństwo trafienia na turnie. Wynika ono albo z szacunkowego rachunku 8/45 = 17 % (chciałbyś
dostać , ale nie chcesz pary w kartach wspólnych), lub posługujesz się equity, które obowiązywałoby od flopa do
turna.
Sytuacja
Equity do
Equity od
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
9 z 12
2011-08-20 19:28
rivera
flopa do turna
para vs. niższa para
80%
95%
para vs. 2 overkarty
54%
86%
para vs. over- & underkarta
70%
93%
para vs. 2 underkarty
85%
100%
QQ+, AK vs. 66
64%
57%
flush draw vs. toppara
35%
20%
flush draw + overkarta vs.
toppara
44%
26%
trójka vs. flush draw
75%
84%
trójka vs. flush draw +
gutshot
66%
78%
To jest zdecydowanie mniej, niż potrzebujesz, aby bezpośrednio zyskownie sprawdzić. Do tej pory nie
uwzględniliśmy możliwości wygrania nie tylko obecnej puli, ale także dodatkowych pieniędzy w przypadku
trafienia na turnie.
Jednak w tej sytuacji faktem jest, że nie jesteś tym, który kończy rundę, więc po tobie ktoś wciąż może przebić (a
to jest całkiem prawdopodobne). Do tego dochodzi to, że jeszcze długo nie możesz bezpośrednio zyskownie
sprawdzić, a to wystarczy, żeby zadeklarować pas jako najlepsze zagranie.
Wzór EV = equity * (wygrana + inwestycja) – inwestycja działa tylko wtedy, kiedy nie istnieje żadna możliwość
poza tym, że wygrasz lub zainwestujesz. Jeśli zaistnieją inne przypadki, to wzór będzie bardziej kompleksowy. W
rozumieniu diagramu w obliczeniach musisz uwzględnić każdą możliwość. Tej formuły będziemy używać w
późniejszych artykułach z tej serii.
Przykład 2
Full-ring, 100BB Stacks
Pre-flop: Hero is BU with A 2
1 fold, UTG2 calls, 1 fold, MP1 calls, 2 folds, CO calls, Hero calls, SB calls, BB checks
Flop: 3 , 8 , T
(Pot: 6BB)
SB bets 5BB
, BB calls 5BB, UTG2 folds, MP1 calls 5BB, CO folds, Hero?
Sytuacja jest podobna, jednak to ty kończysz rundę. Albo sprawdzasz i widzisz kartę z turna, albo pasujesz.
Używamy znowu wzoru:
EV = 0 = equity * wygrana + (1-equity) * przegrana = equity * (6BB + 5BB+5BB+5BB) + (1-equity ) *( -5BB ) =
equity * (6BB + 5BB*4) – 5BB equity = 5BB/(6BB+5BB*4) = equity = 0,19 = 19%
Uwzględniając equity dla drawa do koloru od flopa do turna, w zależności od dokładnej sytuacji, wystarczy to
prawie do sprawdzenia, ponieważ drawujemy do topowego układu. Włączając możliwość zobaczenia od czasu do
czasu karty z rivera za darmo lub wygrania na turnie jeszcze więcej pieniędzy, to mamy tu czystą sytuację do
sprawdzenia.
Oczywiście nasuwa się pytanie, w czym pomaga analiza wartości oczekiwanej? Pomaga ci ona w matematycznej
ocenie gry. Możesz sprawdzić, czy decyzja, którą podjąłeś w grze, okaże się słuszna także po precyzyjnej analizie
z uwzględnieniem dokładnej wielkości puli oraz zakładów, jak i equity.
Pomocna będzie tu opinia innych (dobrych) graczy, przede wszystkim wtedy, kiedy całościowa analiza wartości
oczekiwanej jest po prostu niemożliwa, ponieważ trzeba wziąć pod uwagę wiele możliwych przypadków, a co za
tym idzie, uwzględnić zbyt dużo nieznanych zmiennych. W tym wypadku poza statystycznymi badaniami w bazach
danych nie ma innego kryterium decyzyjnego niż osobista ocena graczy.
Przykład 3
Na koniec jeszcze przykład z sytuacją wejścia za wszystko.
Full-ring, 100BB Stacks
Pre-flop: Hero is CO with Q
J
UTG+1 calls 1BB, 5 folds,
Hero raises 5BB
, BU calls 5BB, SB folds, BB folds, UTG+1 calls 4BB
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
10 z 12
2011-08-20 19:28
Flop: A
, K , 5 (Pot: 16,5BB)
UTG+1 checks,
Hero bets 14BB
,
BU raises 36BB
,
UTG+1 is All-In
, Hero?
Pytaniem jest, czy możesz zyskownie sprawdzić. Określmy na początek zmienne. Jeśli nie skompletujesz drawa,
to tracisz 81BB.
Powinieneś jeszcze realistycznie założyć: BU nie spasuje już swojej ręki, jeśli sprawdzisz. Musi on dołożyć 59BB do
puli, w której jest około 300BB, co uczyni prawie zawsze. Wygraną jest więc 215,5BB (100BB od UTG+1 i BU,
1,5BB dead money i 14BB, które już sam postawiłeś). W ten sposób obliczamy equity potrzebne do wejścia za
wszystko:
81/( 296,5 ) = 0,27 = 27%
Jeśli masz więc więcej equity niż 27 %, to możesz w tej sytuacji sprawdzić. W tym momencie, aby ocenić equity,
proponujemy na przykład dość powszechny sposób oceny, czyli analizę najgorszego wypadku. Robisz ją,
wybierając dla obydwóch przeciwników najgorsze według ciebie ręce z możliwych.
Jeśli twoje equity jest niewystarczające przeciwko tym rękom (lub brakuje ci bardzo mało), to możesz założyć, że
sprawdzenie będzie zyskowne, ponieważ najgorszy wypadek nie jest regułą. Najgorszą możliwą kombinacją
będzie dla ciebie prawdopodobnie trójka lub inny draw do koloru. Draw do koloru zabiera ci outy, a trójka jest
najlepszą ręką i ma nawet redrawa. Wynika z tego na przykład:
Analiza equity
Karty wspólne
A
K
5
Equity Wygrana Podział Przegrana
Ręka
gracz 1
28,57% 28,57%
0%
71,43%
Q
J
gracz 2
70,43% 70,43%
0%
29,57%
AA
gracz 3
1%
1%
0%
99%
T
9
Dzięki temu jest jasne, że sprawdzenie będzie zyskowne. Twoje equity nie będzie gorsze niż w tym wypadku.
Ważny jest przy tym fakt, że tak draw do strita, jak i draw do koloru dają ci topowy układ. Jeśli tak się nie stanie,
to kalkulacja stanie się bardziej kompleksowa.
Podsumowanie
W tym artykule poznałeś podstawowe pojęcia matematyczne oraz koncepcje w no-limit Hold’em i wiesz, jak je
zastosować w praktyce.
W drugiej części z tej serii zajmiemy się dokładniej zakresem i fold equity, a także implied i reverse implied odds,
oraz posłużymy się bardziej skomplikowanymi przykładami.
L I N K I
Dyskusja na forum:
Podyskutuj o treści tego artykułu na forum
[http://pl.pokerstrategy.com/forum/board.php?boardid=56]
Wideo w jęz. ang.:
[http://de.pokerstrategy.com/strategy
/mtt/1523]Wideoseria: Koncepcje matematyczne w no-limit
Hold`em
1-4
[/video
/#searchtext=mathematical%20concepts&key=all&
contenttype=0&gametype=0&tablesize=0&languages=en&
levels=basic,bronze,silver,gold,platinum,diamond&
lowerlimit=0&upperlimit=100&ob=date&od=desc&page=1&
rpp=10]
Znajdziesz ten i wiele innych artykułów na www.PokerStrategy.com
Darmowe artykuły o strategii, filmiki i treningi na żywo
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
11 z 12
2011-08-20 19:28
© Copyright 2011, PokerStrategy.com
Indywidualne konsultacje z profesjonalnymi trenerami pokera
$50+$100 Otrzymaj Twój kapitał startowy za darmo, po rejestracji
Ponad 2.000.000 zarejestrowanych użytkowników na PokerStrategy.com. Dołącz do nich już teraz!
Odkryj największą szkołę pokera na świecie. Bez żadnych kosztów i zobowiązań:
www.pokerstrategy.com
Strategia: Koncepcje matematyczne w no-limit Hold’em - wartość ocze...
http://pl.pokerstrategy.com/strategy/bss/1719/print/
12 z 12
2011-08-20 19:28