γ
:=
C
1.4
f
:=
−
pk
1770MPa
3
γ :=
:=
:=
⋅
S
1.15
fck
70MPa
εcu
2.8 10
PN str 24
EC str 1 NA.2
EC str 26
EC str 26
A
⋅
+ A ⋅
− A ⋅
I.
pprov f
pprov pd
s1 fyd
s2 fyd
A
:=
=
c.eff
η⋅fcd
− 6 2
− 3 2
A
:=
⋅
⋅
⋅
=
×
pprov
12 150 10
m
1.8
10
m
fp01k
PN - str 24
f
:=
⋅
:=
p01k
0.9 fpk
f
=
pd
f
γ
pd
1385.217 MPa S
EC str 1 NA.2
f
−
ck
50MPa
η := 1 −
= 0.9
EC str 32
200MPa
fck
f
:=
=
EC str 30
cd
50 MPa
γC
− 3 2
1.8⋅10
m ⋅1385.217 MPa 2
A
:=
=
c.eff
0.055 m
0.9⋅50MPa II.
Ac.eff
b :=
:=
=
f
0.8m
xeff
0.069 m
bf
- szerokość strefy ściskanej x
d :=
−
=
eff
p
0.8m
0.1m
0.7 m
III.
ξ
:=
=
eff
0.099
dp
- od krawędzi ściskanej do środka ciężkości A.p
IV.
ξ
:=
eff.lim
ε
−
cu
∆εp
f
− pd ⎛
σpmt⎞
∆ε :=
⋅⎜ −
⋅
p
1
0.9
Ep
f
p ⎝
pd ⎠
σ
:= ε
⋅
pmt
εpm E
pm p
P
3
mt
P
0.7⋅2400⋅10 N
− 3
ε
:=
=
×
pm
4.786
10
E ⋅
−
p Approv
9
3 2
195⋅10 Pa⋅1.8⋅10
m
− 3
3
σ
:=
×
⋅
⋅
=
pmt
4.786
10
195 10 MPa 933.27 MPa 1385.22
−
MPa ⎛
0.9⋅933.27 MPa ⎞
− 3
∆ε :=
⎜ −
=
×
p
1
3
⎝
1385.22MPa ⎠
2.796
−
10
195⋅10 MPa 0.8εcu
ξ
:=
=
eff.lim
0.4
ε
−
cu
∆εp
V.
ξ
<
eff
ξeff.lim
VI.
M
:=
⋅ ⋅
⋅( −
) =
⋅
Rd
Ac.eff η fcd dp 0.5xeff 1659.026 kN m f.cd w kPa VII.
M
:=
⋅
Sd
3500kN m
M
>
=
Rd
MSd 0
warunek niespełniony