(xn) X x " X
d(xn, x) 0
limn xn x > 0 n0 n e"
n0 xn " K (x)
x (xn) (xn)
x x > 0 n xn " K (x)
1
fn(x) = x C([0, 1])
n
fn(x) = xn C([0, 1]) L1()
X Y
f : X Y x " X (xn)
x X limn f(xn) = f(x)
f : X X Y x y
(xn) (yn) x y X limn f(xn, yn) = f(x, y)
(xn)
> 0 n0
m, n > n0
d(xm, xn) < .
1
xn =
n
R [0, 1] (0, 1)
(X, d) d
U x " U > 0
K(x, ) " U
F
A x " A
> 0 K(x, ) " A
A A int A U
intU = U
Wyszukiwarka
Podobne podstrony:
AF wykład 1AF wyklad5AF wyklad11Sieci komputerowe wyklady dr FurtakWykład 05 Opadanie i fluidyzacjaWYKŁAD 1 Wprowadzenie do biotechnologii farmaceutycznejmo3 wykladyJJZARZĄDZANIE WARTOŚCIĄ PRZEDSIĘBIORSTWA Z DNIA 26 MARZEC 2011 WYKŁAD NR 3Wyklad 2 PNOP 08 9 zaoczneWyklad studport 8Kryptografia wykladBudownictwo Ogolne II zaoczne wyklad 13 ppozwięcej podobnych podstron