(X
n
)
0
F
0
= {∅, Ω}
F
n
= σ(X
1
, X
2
, . . . , X
n
)
n = 1, 2, . . .
Y
n
n ≥ 1
Y
n
F
n−1
(M
n
), (N
n
)
M
n
=
n
k=1
X
k
Y
k
, N
n
=
n
k=1
X
k
, n = 1, 2, . . . .
(M
n
)
(F
n
)
!
"
#
$
(N
n
)
%
n
|Y
n
| ≤ 1
&
E max
1≤k≤n
|M
k
|
2
≤ 4E|N
n
|
2
, n = 1, 2, . . . .
(X
n
)
P (X
n
= 1) =
1
3
= 1 −P (X
n
= −1)
n = 1, 2, . . .
'
&
(F
n
) = σ(X
1
, X
2
, . . . , X
n
)
(
τ = inf{n ≥ 3 : X
n
≥ X
n−1
≥ X
n−2
},
σ = inf{n ≥ 2005 : X
1
= X
2
+ X
3
+ . . . + X
n
},
η = inf{n ≥ 5 : X
n
≥ −X
n
+ X
n+1
},
γ = inf{n ≥ 3 : X
n
+ X
n−1
> X
n+1
}.
(ε
n
)
P (ε
n
= ±1) =
1
2
n = 1, 2, . . .
τ
τ = inf{n ≥ 4 : ε
1
+ ε
2
+ ε
3
= 2005 + ε
4
+ ε
5
+ . . . + ε
n
}.
%
τ
)
(σ(ε
1
, ε
2
, . . . , ε
n
)),
n = 1, 2, . . .
%
P (τ < ∞) = 1
Eτ.
(X
n
)
P (X
n
=
1
2
) = P (X
n
=
3
2
) =
1
2
τ
τ = inf{n : X
1
X
2
. . . X
n
<
1
100
}.
%
τ
)
(σ(X
1
, X
2
, . . . , X
n
)),
n = 1, 2, . . .
%
P (τ < ∞) = 1
(X
n
)
&
n ≥ 1
X
n
*$
&
n,
1
n
+
"
(α
n
)
S
n
=
n
k=1
X
k
− α
k
,
L
2
-