Wydział ILiŚ, Budownictwo i Transport, sem.1
dr Jolanta Dymkowska Twierdzenie de L’Hospitala Zad.1 Oblicz granice funkcji: 1.1
lim
1
1.2
lim
x+1
1.3
lim arctg 2x
x→0 ex−1
x→∞
ln x
x→0
x2+3x
1.4
lim e3x−3x−1
1.5
lim x−arctg x
1.6
lim
ln x
√
x→0
sin2 5x
x→0
x3
x→∞
x2−1
√1−x
1.7
lim 1−cos x
1.8
lim x2−1+ln x
1.9
lim
e
−1
x→0
2x2
x→1
ex−e
sin(x−1)
x→1−
1.10
lim cos x − sin x + 1
1.11
lim
ln sin 2x
1.12
lim
ln ln x
x→ π
sin 2x − cos x
ln sin 3x
x
x→0+
x→∞
2
1.13
lim ex−e−x−2x
1.14
lim ex−1−e1−x−2x+2
x→0
x−sin x
x→1
x−1−sin(x−1)
1.15
lim
1 −
1
1.16
lim
1
−
1
1.17
lim
1
− ctg 2x
x→0
x
ex−1
x→1
ln x
x−1
x→0
x2
√
1.18
lim
1
−
1
1.19
lim (
x − ln x )
x→0
x2
sin2 x
x→∞
√
1
1.20
lim x e x
1.21
lim
x ln x
1.22
lim tg x · ln x x→0+
x→0+
x→0+
1
1.23
lim tg x · e
x2
1.24
lim x2 e−x2
1.25
lim
x − π
tg x
2
x→0−
x→∞
x→ π +
2
1.26
lim x2 ln x
1.27
lim
x ex
1.28
lim x arctg x
x→0+
x→−∞
x→∞
1.29
lim xx2
1.30
lim
1 + 1 x
1.31
lim (tg x)tg 2x x
x→0+
x→0+
x→0
1
1
1.32
lim
1 sin x
1.33
lim (ln x)
x
1.34
lim
sin x
x2
x
x
x→0+
x→∞
x→0
1
1
1
1.35
lim x
arctg x
(1+x) x − e
x
1.36
lim
x2
1.37
lim
x→∞
x→0
x
x→0
x