Pi k o masie 1 kg upuszczono swobodnie z wysoko ci 1 m. Po odbiciu od pod o a pi ka
wznios a si na maksymaln wysoko 50 cm. W wyniku zderzenia z pod o em i w trakcie
ruchu pi ka straci a energi o warto ci oko o
A. 1 J
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA
B. 2 J
ARKUSZA I
C. 5 J
Wyra enie warto ci si y równaniem:
D. 10 J
1
F Eq
Zadanie 7. (1 pkt)
2
Energia elektromagnetyczna emitowana z powierzchni S o ca powstaje w jego wn trzu
Obliczenie warto ci si y:
Zadania zamkni te
w procesie
1
7
HðEðMðAðTð OðCðEðNðIðAðNðIðAð RðOðZðWðIð!ðZðAð"ð ZðAðDðAð"ð
SðZðKðIðCð OðDðPðOðWðIðEðDðZðIð Ið SðCðHðEðMðAðTð OðCðEðNðIðAðNðIðAð RðOðZðWðIð!ðZðAð"ð ZðAðDðAð"ð
F 2 N
A. 10
syntezy lekkich j der atomowych. 4 5
Numer zadania 1 2 3
Optyka falowa / fale elektromagnetyczne
Wð AðRðKðUðSðZðUð Ið Wð AðRðKðUðSðZðUð Ið 6 7 8
B. rozszczepienia ci kich j der atomowych.
Prawid owa
Wyznaczenie zmiany energii:
C A D C B B B C
C. syntezy zwi zków chemicznych.
odpowied
poziom podstawowy
$ð,ð mðeðrðyðtðoðrðyðcðzðiðeð pðoðpðrðaðwð$ð mðeðtðoðdð$ð,ð tðoð zðað rðoðzðwðið$ðzðaðiðeð
Jðeð#ðeðlðið zðdðaðjð$ðcðyð rðoðzðwðið$ð#ðeð zðaðdðaðiðeð ið$ð,ð mðeðrðyðtðoðrðyðcðzðiðeð pðoðpðrðaðwð$ð mðeðtðoðdð$ð,ð tðoð zðað rðoðzðwðið$ðzðaðiðeð
D. rozpadu zwi zków chemicznych.
1
1 1
Liczba
E 13,6 eV
jðeð mðaðkðsðyðmðaðlð$ð lðiðcðzðbð%ð pðuðkðtðóðwð.ð oðtðrðzðyðmðuðjðeð mðaðkðsðyðmðaðlð$ð lðiðcðzðbð%ð pðuðkðtðóðwð.ð
1 1 1 1 1 1 1 1
4 9
punktów
Zadanie 8. (1 pkt)
KLUCZ ODPOWIEDZI
Stosowana przez Izaaka Newtona metoda badawcza, polegaj ca na wykonywaniu
Zðaðdðaðiðað zðaðmðkðið%ðtðeð Zðaðdðaðiðað zðaðmðkðið%ðtðeð
Obliczenie warto ci zmiany energii:
do wiadcze , zbieraniu wyników swoich i cudzych obserwacji, szukaniu w nich regularno ci,
1
Zadanie 1. (1 pkt) yródło: CKE 2005 (PP), zad. 9.
stawianiu hipotez, nast pnie uogólnianiu poprzez formu owanie
E = 1,9 eV
Zadania otwarte 4 praw,
4ð 5ð 6ð 7ð 8ð 9ð 1ð0ð 9ð
Nðrð zðaðdðaðiðað 1ð a 2ð 3ð 4ð ich 5ð 6ð 7ð 8ð to przyk ad 1ð0ð
metody
Dð Cð Cð Obliczenie d ugo ci fali: Dð
Dð A. indukcyjnej.
Að Bð Að Cð Dð Cð Cð Dð Að Að Dð
Oðdðpðoðwðiðeðdð!ð Að
Zdaj cy mo e rozwi za zadania ka d poprawn metod . Otrzymuje
B. hipotetyczno-dedukcyjnej.
1
hc
wtedy maksymaln liczb punktów.
Zðaðdðaðiðað oðtðwðaðrðtðeð Zðaðdðaðiðað oðtðwðaðrðtðeð
C. 6,54 10 7 m 654nm
Zadanie 2. (2 pkt) yródło: CKE 01.2006 (PP), zad. 21.
Eindukcyjno-dedukcyjnej.
D. statystycznej.
Numer
IðLðOð"ð#ð PðKðTð.ð IðLðOð"ð#ð PðKðTð.ð
Proponowana odpowied Punktacja Uwagi
1
Zadanie 9. (1 pkt) zðað
Eð EðLðEðMðEðNðTðYð OðDðPðOðWðIðEðDðZðIð Nðrð PðUðNðKðTðOðWðAðNðEð EðLðEðMðEðNðTðYð OðDðPðOðWðIðEðDðZðIð
zðað
zadania Udzielenie odpowiedzi twierdz cej. zðað zðað
zðaðdð.ð
cðzðyðoð$ð%ð zðaðdðaðiðeð cðzðyðoð$ð%ð zðaðdðaðiðeð
Optyczny teleskop Hubble a kr y po orbicie oko oziemskiej w odleg o ci oko o 600 km od
Porównanie energii wydzielonej podczas och adzania
Aby p yta kompaktowa mieni a si barwami t czy, nale y j
1ð 2ð 1ð 2ð
powierzchni Ziemi. Umieszczono go tam, aby 1
ið mðoðtðoðrðóðwðkðið wðzðgðlð&ðdðeðmð bðrðzðeðgðuð.ð Wðyðzðaðcðzðeðiðeð wðaðrðtðoð$ðcðið pðrð&ðdðkðoð$ðcðið mðoðtðoðrðóðwðkðið wðzðgðlð&ðdðeðmð bðrðzðeðgðuð.ð
z energi potencjaln :
o wietli wiat em bia ym.
1
A. zmniejszy odleg o do fotografowanych obiektów.
2
v !ð v1ð "ð v2ð v !ð v1ð "ð v2ð
E = mgh lub Q = mgh
B. wyeliminowa zak ócenia elektromagnetyczne pochodz ce z Ziemi.
Podanie nazwy zjawiska: interferencja lub dyfrakcja. 1
C. wyeliminowa wp yw czynników atmosferycznych na jako zdj .
mð mð mð mð
Okre lenie wysoko ci:
!ð(ð3ð "ð1ð)ð !ð2ð v !ð(ð3ð "ð1ð
D. wyeliminowa dzia anie si grawitacji. )ð !ð2ð
3
sð sð sð sð
1ð1ð 1
Q
Wykorzystanie zale no ci:
h
Zadanie 3. (1 pkt) yródło: CKE 05.2006 (PP), zad. 10.
Zadanie 10. (1 pkt)
SðZðKðIðCð OðDðPðOðWðIðEðDðZðIð Ið SðCðHðEðMðAðTð OðCðEðNðIðAðNðIðAð RðOðZðWðIð!ðZðAð"ð ZðAðDðAð"ð
mg
2
wðkðið.ð Oðbðlðiðcðzðeðiðeð cðzðaðsðuð rðuðcðhðuð mðoðtðoðrðóðwðkðið.ð
1
h pPróbny egzamin maturalny z fizyki i astronomii
Podczas odczytu za pomoc wi zki wiat a laserowego informacji zapisanych na p ycie CD
Wð AðRðKðUðSðZðUð Ið
3
Obliczenie wysoko ci:
i Ek
1ð 1ð
Poziom podstawowy
sð wykorzystywane jest zjawisko sð
p 2m
1
tð !ð !ð1ð0ð0ð0ð sð tð !ð !ð1ð0ð0ð0ð sð
A. polaryzacji.
h Jðeð#ðeðlðið zðdðaðjð$ðcðyð rðoðzðwðið$ð#ðeð zðaðdðaðiðeð ið$ð,ð mðeðrðyðtðoðrðyðcðzðiðeð pðoðpðrðaðwð$ð mðeðtðoðdð$ð,ð tðoð zðað rðoðzðwðið$ðzðaðiðeð
6,72m
v mv2 v
Próbny egzamin maturalny z fizyki i astronomii
SðZðKðIðCð OðDðPðOðWðIðEðDðZðIð Ið SðCðHðEðMðAðTð OðCðEðNðIðAðNðIðAð RðOðZðWðIð!ðZðAð"ð ZðAðDðAð"ð
Zapisanie zale no ci mgh . 1
Okre lenie d ugo ci fali: oðtðrðzðyðmðuðjðeð mðaðkðsðyðmðaðlð$ð lðiðcðzðbð%ð pðuðkðtðóðwð.ð
Poziom podstawowy
B. odbicia.
2
18.1
Wð AðRðKðUðSðZðUð Ið 3
10.1 Zðaðpðiðsðaðiðeð rðóðwðaðiðað.ð
a zamkni te (punktacja 0 1) C. za amania.
Obliczenie zmiany energii Ep = 9·10-3 J.
h
1
1
D. interferencji.
Zðaðdðaðiðað zðaðmðkðið%ðtðeð
Dopuszcza si rozwi zanie z zastosowaniem równa ruchu.
2ð!ðrð 2ð!ðrð
18 2mEk 4
v !ð ,ð v9 ,ð
!ð
e 4 Jðeð#ðeðlðið zðdðaðjð$ðcðyð rðoðzðwðið$ð#ðeð zðaðdðaðiðeð ið$ð,ð mðeðrðyðtðoðrðyðcðzðiðeð pðoðpðrðaðwð$ð mðeðtðoðdð$ð,ð tðoð zðað rðoðzðwðið$ðzðaðiðeð
5 10
Podanie dwóch przyczyn strat energii np. wyst powanie si
Tð1 2 3 Zadanie 4. (1 pkt) 6 7 8 Tð
oðtðrðzðyðmðuðjðeð mðaðkðsðyðmðaðlð$ð lðiðcðzðbð%ð pðuðkðtðóðwð.ð
yródło: CKE 11.2006 (PP), zad. 6.
Nðrð zðaðdðaðiðað 1ð 2ð 3ð 4ð 5ð 6ð 7ð 8ð 9ð 1ð0ð
oporu podczas ruchu, strata energii przy cz ciowo
N
2 Próbny egzamin maturalny z fizyki i astronomii
Obliczenie d ugo ci fali:
18.2 2
mð oðbðrðoðtðuð Zðiðeðmðið wðoðkðóð(ð oðsðið.ð oðrðaðzð zðaðpðiðsðaðiðeð,ð 'ðeð Tð jðeðsðtð oðkðrðeðsðeðmð oðbðrðoðtðuð Zðiðeðmðið wðoðkðóð(ð oðsðið.ð
1
niespr ystym odbiciu od pod o a.
Poziom podstawowy
wied A B B A C A B D B A
Oðdðpðoðwðiðeðdð!ð Bð Að Cð Dð Cð Cð 1 Dð Að Að Dð
1ð 1ð
Zðaðdðaðiðað zðaðmðkðið%ðtðeð
= 2,87·10-10 m
Za podanie jednej przyczyny 1pkt.
Tð =ð 2ð4ð hð Zadania zamkni te (punktacja 0 1) Tð =ð 2ð4ð hð
Q
mv2
Zadanie 5. (1 pkt) Liczba
Zðaðdðaðiðað oðtðwðaðrðtðeð 6ð 1 2 8ð 9ð 1ð0ð
að pðrð&ðdðkðoð$ð%ð oðrðbðiðtðaðlð)ð.ð lðuðbð wðyðkðoðrðzðyðsðtðaðiðeð zðaðlðeð'ðoð$ðcðið að pðrð&ðdðkðoð$ð%ð oðrðbðiðtðaðlð)ð.ð fr yródÅ‚o: CKE 11.2006 (PP), zad. 7.
Zapisanie zale no ci qvB i podstawienie v r 2 .
Punktowanea) 4ð 5ð 7ð
elementy odpowiedzi
Nðrð zðaðdðaðiðað 1ð 2ð 4 3ð 5 punktów Razem
2 3
ia Zadanie 1 500 elektronów r 6 7 8 9 10
1
Oðdðpðoðwðiðeðdð!ð Bð Að qB Cð Dð Cð Cð Dð Að Að Dð
GðMð 0,2 eV GðMð
IðLðOð"ð#ð PðKðTð.ð
v !ð Nðrð v !ð
Otrzymanie zale no ci f .
1
PðUðNðKðTðOðWðAðNðEð EðLðEðMðEðNðTðYð OðDðPðOðWðIðEðDðZðIð
Wpisanie prawid owych 3 zðað zðað
19
rð 1ð2ð rð 2ð
Odpowied A B B A 2 m 2ð C A B D B A
A
zðaðdð.ð B
A
B
Zadanie 6. (2 pkt) yródło: CKE 11.2006 (PP), zad. 20.
10.2
b) 0 elektronów
cðzðyðoð$ð%ð zðaðdðaðiðeð
Zðaðdðaðiðað oðtðwðaðrðtðeð
okre le pod rysunkami.
Zapisanie prawid owego wniosku cz stotliwo obiegu
1.1 1 1
Nale y zmierzy okres (lub cz stotliwo ) drga wahad a 1
1ð 2ð
4
Oðbðlðiðcðzðeðiðeð wðaðrðtðoð$ðcðið pðrð&ðdðkðoð$ðcðið.ð
0 eV
Wðyðzðaðcðzðeðiðeð wðaðrðtðoð$ðcðið pðrð&ðdðkðoð$ðcðið mðoðtðoðrðóðwðkðið wðzðgðlð&ðdðeðmð bðrðzðeðgðuð.ð
Nr. cz stki nie zale y od warto ci jej pr dko ci, poniewa q, B, 1
Liczba
3
i jego d ugo .
Punktowane elementy odpowiedzi Razem IðLðOð"ð#ð PðKðTð.ð
Nðrð
tor przemieszenie
zadania oraz m s wielko ciami sta ymi. punktów
kðmð kðmð2ð
Uzasadnienie dla punktu a) Uzasadnienie
PðUðNðKðTðOðWðAðNðEð EðLðEðMðEðNðTðYð OðDðPðOðWðIðEðDðZðIð
vv!ð "ð v
zðað zðað
v #ð 3ð #ðv3ð
zðaðdð.ð
1
Prawid owe zinterpretowanie informacji 1ð
cðzðyðoð$ð%ð zðaðdðaðiðeð
np.: energia fotonu jest wi ksza od pracy wyj cia elektronu. dla punktu a)
sð sðna rysunku
Zauwa enie, e droga jest równa po owie d ugo ci okr gu
i wyznaczenie ró nicy dróg przebytych 1 oba promienie 1
przez
Wpisanie prawid owych mðA mð
1.2
i b) mo e by 1ð 2ð
Uzasadnienie dla punktu b) A
B
v !ð(ð3ðB !ð2ð
"ð1ð)ð
Obliczenie drogi s 6, 28 m . 1ð 1ð
Wðyðzðaðcðzðeðiðeð wðaðrðtðoð$ðcðið pðrð&ðdðkðoð$ðcðið mðoðtðoðrðóðwðkðið wðzðgðlð&ðdðeðmð bðrðzðeðgðuð.ð
1
pðrð&ðdðkðoð$ð%ð jðeðsðtð wðyðrðað'ðoðað iðyðcðhð jðeðdðoðsðtðkðaðcðhð.ð
Uðzðaðjðeðmðyð rðóðwðiðeð'ð wðyðiðkð,ð gðdðyð pðrð&ðdðkðoð$ð%ð jðeðsðtð wðyðrðað'ðoðað iðyðcðhð jðeðdðoðsðtðkðaðcðhð.ð
1
okre le pod rysunkami.
x = 0,0000012 m (lub 1,2 m).
sð sð wspólne.
1ð1ð
np.: energia fotonu jest mniejsza od pracy wyj cia elektronu.
1
11.1 1
20 2
Ustalenie przebytej drogi (10 m) np. na podstawie wykresu. 1 !ð
Zauwa enie, e dla fali o d ugo ci = 0,4 m ró nica dróg
v v1ð "ð v2ð
Uðwðaðgðað:ð
11 3
m
2
Oðbðlðiðcðzðeðiðeð cðzðaðsðuð rðuðcðhðuð mðoðtðoðrðóðwðkðið.ð 1
wynosi 3 , zatem w punkcie P wyst pi wzmocnienie
Obliczenie warto ci pr dko ci redniej vsr = 2,5 . tor przemieszenie
1
að wðaðrðtðoð#ð$ð pðrð%ðdðkðoð#ðcðið oðrðbðiðtðaðlðeðjð iðeð pðrðzðyðdðzðiðeðlðað sðið%ð
Zðað wðyðpðrðoðwðaðdðzðeðiðeð zðaðlðeð"ðoð#ðcðið að wðaðrðtðoð#ð$ð pðrð%ðdðkðoð#ðcðið oðrðbðiðtðaðlðeðjð iðeð pðrðzðyðdðzðiðeðlðað sðið%ð
mð mð
s
wiat a.
v !ð(ð3ð "ð1ð)ð !ð2ð
1ð
pðuðkðtðuð.ð
4tð !ð !ð1ð0ð0ð0ð sð sð
Zauwa enie, e droga jest równa po owie d ugo ci okr gu 1
sð
Ustalenie warto ci si y nap dowej Fnap = 2500 N. 1 sð
1ð1ð
Podanie minimalnej energii jonizacji E = 13,6 eV.
11.2
21.1 1
Obliczenie drogi s 6,1ð
Ustalenie warto ci si y wypadkowej po ustaniu wiatru Fwyp = 500 N. 1 v 1
Za podanie warto ci ( 28 m . 2ð
13,6 eV) nie przyznajemy punktu.
kðið iðeð mðoðgð)ð sðið&ð tðaðkð pðoðrðuðsðzðað%ð.ð 1ð3ð Zðaðpðiðsðaðiðeð sðtðwðiðeðrðdðzðeðiðað,ð 'ðeð cðzð)ðsðtðkðið iðeð mðoðgð)ð sðið&ð tðaðkð pðoðrðuðsðzðað%ð.ð 1ð 2ð
3
Oðbðlðiðcðzðeðiðeð cðzðaðsðuð rðuðcðhðuð mðoðtðoðrðóðwðkðið.ð
m
Ustalenie przebytej drogi (10 m) np. na podstawie wykresu. 1
13,6eV
Zðaðpðiðsðaðiðeð rðóðwðaðiðað.ð
Obliczenie warto ci przyspieszenia a = 0,5 .
1
21 Skorzystanie z warunku E . 3
1
n
1ð
m
12 2
s2
n2
21.2 Obliczenie warto ci pr dko ci redniej vsr =sð2,2ð5 .
tð !ð !ð1ð0ð0ð0ð sð 1
!ðrðs
Zastosowanie równa opisuj cych drog i pr dko w ruchu
Podanie minimalnej energii wzbudzenia Emin = 10,2 eV.
v
v !ð ,ð
1ð 1ð 1
Tð
jednostajnie przyspieszonym i przekszta cenie ich do postaci
Za podanie warto ci ( 10,2 eV) nie przyznajemy punktu.
Ustalenie warto ci si y nap dowej Fnap = 2500 N. 1
1
Zðaðpðiðsðaðiðeð rðóðwðaðiðað.ð mv2
v2 2
Ustalenie warto ci si y wypadkowej po ustaniu wiatru Fwyp = 500 N. 1
oðrðaðzð zðaðpðiðsðaðiðeð,ð 'ðeð Tð jðeðsðtð oðkðrðeðsðeðmð oðbðrðoðtðuð Zðiðeðmðið wðoðkðóð(ð oðsðið.ð
umo liwiaj cej obliczenie przyspieszenia ( a ).
13 3
Skorzystanie z zale no ci evB i doprowadzenie jej do
m 1ð
2s
r
Obliczenie warto ci przyspieszenia a = 0,5 !ð212ð!ðrð
.
Tð =ð 2ð4ð hð 1
1
v ,ð
Obliczenie warto ci przyspieszenia a = 1,2 m/s2 . 1
s
mv
Tð
postaci eB .
lðuðbð wðyðkðoðrðzðyðsðtðaðiðeð zðaðlðeð'ðoð$ðcðið að pðrð&ðdðkðoð$ð%ð oðrðbðiðtðaðlð)ð.ð
5.1 Zaznaczenie prawid owej odpowiedzi tylko elektrony. 1
Zastosowanie równa opisuj cych drog i pr dko w ruchu
atramentowa
19. Drukarka
20.
Dwoista natura wiat a
21.
P yta
kompaktowa
9. Samochód na podno niku
22.
Fale materii
ziemskiego
10. Wyznaczanie przyspieszenia
23.
Fotoemisja
C. zmienne pole elektryczne.
Zadanie 3. (1 pkt)
D. zmienne pole magnetyczne.
Linie pola magnetycznego wokó dwóch równoleg ych umieszczonych blisko siebie
Zadanie 8. (1 pkt)
przewodników, przez które p yn pr dy elektryczne o jednakowych nat eniach, tak jak
Ziemia kr y wokó S o ca w odleg o ci w przybli eniu 4 razy wi kszej ni Merkury.
pokazano poni ej, prawid owo ilustruje rysunek
Korzystaj c z trzeciego prawa Keplera mo na ustali , e okres obiegu Ziemi wokó S o ca
jest w porównaniu z okresem obiegu Merkurego d u szy oko o
A. 1.
B. 2.
A. 2 razy.
C. 3.
B. 4 razy.
D. 4.
C. 8 razy.
rysunek 2 rysunek 3 rysunek 4
D. 16 razy. rysunek 1
Zadanie 7. (1 pkt) yródło: CKE 2007 (PP), zad. 4.
Zadanie 9. (1 pkt)
Zadanie 4. (1 pkt)
J dro izotopu uleg o rozpadowi promieniotwórczemu. Powsta o nowe j dro zawieraj ce
Monochromatyczna wi zka wiat a wys ana przez laser pada prostopadle na siatk
o jeden proton wi cej i o jeden neutron mniej ni j dro wyj ciowe. Przedstawiony powy ej
dyfrakcyjn . Na ekranie po o onym za siatk dyfrakcyjn mo emy zaobserwowa
opis dotyczy rozpadu
A. jednobarwne pr ki dyfrakcyjne.
A. alfa.
B. pojedyncze widmo wiat a bia ego.
B. gamma.
C. pojedynczy jednobarwny pas wiat a.
C. beta plus.
D. widma wiat a bia ego u o one symetrycznie wzgl dem pr ka zerowego.
D. beta minus.
Zadanie 8. (1 pkt) yródło: CKE 2008 (PP), zad. 10.
Zadanie 5. (1 pkt)
Zadanie 10. (1 pkt)
Zasada nieoznaczono ci Heisenberga stwierdza, e
Przyrz d s u cy do uzyskiwania i obserwacji widma promieniowania elektromagnetycznego
to
A. im dok adniej ustalimy warto p du cz stki, tym dok adniej znamy jej po o enie.
A. kineskop.
B. im dok adniej ustalimy warto p du cz stki, tym mniej dok adnie znamy jej
B. mikroskop.
po o enie.
C. oscyloskop.
C. nie ma zwi zku pomi dzy dok adno ciami ustalenia warto ci p du i po o enia cz stki.
10 Egzamin maturalny z fizyki i astronomii
D. spektroskop.
D. im mniej dok adnie znamy warto p du cz stki, tym mniej dok adnie mo emy ustali
Poziom podstawowy
jej po o enie.
Zadanie 9. (6 pkt) yródło: CKE 2008 (PP), zad. 20.
Zadanie 20. Laser (6 pkt)
W tabeli przedstawiono informacje o laserze helowo-neonowym i laserze rubinowym.
Rodzaj lasera D ugo fali wietlnej emitowanej przez laser Moc lasera
helowo-neonowy 632 nm 0, 01 W
rubinowy 694 nm 1 W
Po o wietleniu siatki dyfrakcyjnej laserem rubinowym zaobserwowano na ekranie jasne
i ciemne pr ki. Na rysunku (bez zachowania skali odleg o ci) zaznaczono jasne
pr ki (P0(R), P1(R)).
laser rubinowy siatka dyfrakcyjna
siatka dyfrakcyjna
P1
P1(R)
P1(He)
P0
P0(He)
P0(R)
P1(He)
P1
P1(R)
ekran
Zadanie 9.1 (2 pkt)
Zadanie 20.1 (2 pkt)
Zapisz nazwy dwóch zjawisk, które spowodowa y powstanie pr ków na ekranie.
1. zjawisko dyfrakcji
2. zjawisko interferencji
Zadanie 20.2 (2 pkt)
Na przedstawionym powy ej rysunku zaznacz przybli one po o enia jasnych pr ków P0(He)
i P1(He) dla lasera helowo neonowego. Odpowied uzasadnij, zapisuj c odpowiednie
zale no ci.
2
n
n d sin sk d sin
P1(R)
ekran
Zadanie 20.1 (2 pkt)
Zapisz nazwy dwóch zjawisk, które spowodowa y powstanie pr ków na ekranie.
1. zjawisko dyfrakcji
2. zjawisko interferencji
Zadanie 9.2 (2 pkt)
Zadanie 20.2 (2 pkt)
Na przedstawionym powy ej rysunku zaznacz przybli one po o enia jasnych pr ków P0(He)
i P1(He) dla lasera helowo neonowego. Odpowied uzasadnij, zapisuj c odpowiednie
zale no ci.
n
n d sin sk d sin
d
Poniewa He < R to sin He < sin R ,
11
zatem równie He < R Egzamin maturalny z fizyki i astronomii
Poziom podstawowy
Fizyka i astronomia poziom podstawowy
Klucz punktowania odpowiedzi
Zadanie 9.3 (2 pkt)
Zadanie 20.3 (2 pkt)
Wyka , zapisuj c odpowiednie zale no ci, e warto p du pojedynczego fotonu
emitowanego przez laser helowo-neonowy jest wi ksza od warto ci p du fotonu
Zadanie 6.
emitowanego przez laser rubinowy.
Ustalenie, jak zmienia si ogniskowa i zdolno
Wiadomo ci i rozumienie skupiaj ca soczewki oka, gdy cz owiek przenosi 0 1
h
p
wzrok z czytanej ksi ki na odleg gwiazd .
Poprawna odpowied :
h h
Dla laserów opisanych w zadaniu pR oraz pHe .
ogniskowa soczewki oka zdolno skupiaj ca
R He
A. R
Poniewa He < ro nie to pHe > pR . maleje
Zadanie 10. (1 pkt) yródło: CKE 2009 (PP), zad. 7.
Zadanie 7.
Zadanie 21. Rozpad promieniotwórczy (4 pkt)
J dro uranu (92U) rozpada si na j dro toru (Th) i cz stk alfa.
Wskazanie zjawiska, dzi ki któremu mo liwe jest
uran 238 238,05079 u
W tabeli obok podano masy atomowe uranu, toru i helu. 0 1
Wiadomo ci i rozumienie przesy anie sygna u wietlnego przy u yciu
tor 234 234,04363 u
wiat owodu.
hel 4 4,00260 u
Zadanie 21.1 (2 pkt)
Poprawna odpowied :
Zapisz, z uwzgl dnieniem liczb masowych i atomowych, równanie rozpadu j dra uranu.
D. ca kowitego wewn trznego odbicia.
6 Egzamin maturalny z fizyki i astronomii
238 4 234
Klucz punktowania odpowiedzi poziom podstawowy
U He Th
Zadanie 8.
92 2 90
Zadanie 11. (4 pkt) yródło: CKE 2010 (PP), zad. 16.
Wybranie prawdziwej informacji dotycz cej masy
Zadanie 11.1 (1 pkt)
Zadanie 16.1.
Wiadomo ci i rozumienie 0 1
j dra berylu.
Zadanie 21.2 (2 pkt)
Oblicz energi wyzwalan podczas opisanego powy ej rozpadu j dra. Wynik podaj w MeV.
Obliczenie stosunku energii kwantów promieniowania
Poprawna odpowied :
Korzystanie z informacji 0 1
W obliczeniach przyjmij, e 1 u 931,5 MeV.
emitowanego przez laser b kitny i czerwony
B. M < 4 mp + 5 mn
m 238,05079u -
234,04363u + 4,00260u
Zadanie 9.
1 p. obliczenie stosunku energii kwantów
ch
Wiadomo ci i rozumienie Ustalenie, jak zmienia si warto pr dko ci liniowej 0 1
m 0,00456u
hE
satelity podczas zmiany orbity.
zatem
MeV
Poprawna odpowied :
Eb Eb
E 0,00456ucz931,5
2 zatem 1,5
D. zmaleje razy. u
E b E
cz cz
Zadanie 10.
E 4,25 MeV
Zadanie 16.2.
Ustalenie zwi zku mi dzy d ugo ciami fal de
Wiadomo ci i rozumienie 0 1
Broglie a dla okre lonych cz stek.
Ustalenie najwy szego rz du widma dla wiat a
Zadanie 22. Astronomowie (1 pkt)
Poprawna odpowied :
Korzystanie z informacji emitowanego przez b kitny laser przechodz cego 0 3
Wyja nij, dlaczego astronomowie i kosmolodzy prowadz c obserwacje i badania obiektów
A. 0,25
p
przez siatk dyfrakcyjn opisan w zadaniu
we Wszech wiecie, obserwuj zawsze stan przesz y tych obiektów.
3
Zadanie 11.1
Obserwowane i badane obiekty astronomiczne znajduj si w du ych
Obliczenie stosunku energii kwantów promieniowania
Korzystanie z informacji 0 1
emitowanego przez laser b kitny i czerwony
1 p. obliczenie stosunku energii kwantów
ch
hE
zatem
Eb Eb
cz
zatem 1,5
E b E
cz cz
Zadanie 16.2.
Zadanie 11.2 (3 pkt)
Ustalenie najwy szego rz du widma dla wiat a
Korzystanie z informacji emitowanego przez b kitny laser przechodz cego 0 3
przez siatk dyfrakcyjn opisan w zadaniu
1 p. uwzgl dnienie sposobu wyznaczenia sta ej siatki dyfrakcyjnej,
mm1
np.: d
500
1 p. uwzgl dnienie warunku sin = 1 we wzorze dn sin przy wyznaczaniu
maksymalnego rz du widma
1 p. ustalenie maksymalnego rz du widma
n = 4
Zadanie 17.1.
Obliczenie zdolno ci skupiaj cej zwierciad a dla
Korzystanie z informacji 0 1
podanej warto ci jego ogniskowej
1 p. obliczenie zdolno ci skupiaj cej zwierciad a Z = 1 D
Zadanie 17.2.
Obliczenie d ugo ci promienia krzywizny zwierciad a
Korzystanie z informacji 0 1
dla podanej warto ci jego ogniskowej
1 p. obliczenie promienia krzywizny zwierciad a r = 2 m
4
Wyszukiwarka
Podobne podstrony:
Fizyka PP kluczFizyka 2 PP klucz(2)Fizyka PP klucz[1]fizyka pp kluczFizyka 7 PP kluczFizyka PP kluczfrancuski pp kluczFizyka PPfizyka p4 kluczfizyka 3 pp2011 listopad polski pp kluczfizyka pp rukrainski pp kluczfizyka pp (3)więcej podobnych podstron