GRANICE POD. WYRAŻEŃ ( x-_>0)
Funkcja Pochodna
Uwagi
1
lim x1 x =e x-->(+/-)∞
c
0
c<=>R
sinx
x
lim
= 1
1
x
lim 1 = e x
xa
axa-1
a<=>R
tgx
x
lim
= 1
a
x
lim 1 = ea x
ax
axlna
a>0, x<=>R
arcsinx
lim
= 1
x
ex
ex
x<=>R
arctgx
lim
= 1
x
logax
1/xlna
0<a≠1, x>0
lim ex−1 = 1
x
lnx
1/x
x>0
ln x 1
lim
= 1
x
sinx
cosx
x<=>R
lim ax−1 = lna x
cosx
-sinx
x<=>R
log 1 x
1
lim
a
=
x
lna
tgx
1/ 2
cos x
x≠90
Lim x1 a−1 = a x
ctgx
-(1/ 2
sin x)
x≠180
arcsinx
1/√ 2
1-x
x<=>(-1;1)
arccosx
-(1/√ 2)
1-x
x<=>(-1;1)
arctg
1/ 2
1+x
x<=>R
arcctg
-(1/ 2
1+x )
x<=>R
<=> - należy.
1
∫ eax b dx =
eax b +C, a≠0
a
∫ dx=x+C
∫ ex = ex +C
1
dx
∫ xdx=
x 2 +C
2
∫
dx = arctanx +C
1 x 2
1
dx
1
∫ xn dx=
xn1 +C, n≠0
n
∫
arctan (ax+b)+C, a≠0
1
1 ax b2 dx = a 1
dx
1
x
∫
dx=ln|x|+C
x
∫
dx =
arctan
+C, a≠0
a 2 x 2
a
a
1
1
dx
1
a x
∫
dx = -
+C
∫
dx =
ln ∣
∣ +C, a>0 i |x|≠0
x 2
x
a 2− x 2
2a
a− x
f ' x
dx
1
∫
dx = ln|f(x)|+C
∫
dx =
ln|ax+b|+C, a≠0
f x
ax b
a
2
dx
1
∫ x dx =
x
3
x +C
∫
+C
ax b2 dx = - a ax b
dx
1
∫
dx = 2 x +C
∫
dx = -cotx +C
x
sin2 x
a
1
∫ (ax+b)dx =
x 2 +bx+C
2
∫
dx = tgx +C
cos2 x
1
∫ sinxdx = -cosx +C
∫ ax b n dx=
ax b n1 +C, a≠0, n≠-1
a n1
2
∫ cosxdx = sinx +C
∫ ax b dx=
ax b
3a
ax b +C, a≠0
1
2
1
∫
dx = -
ax b +C, a≠0
∫ sin(ax+b)dx = -
cos(ax+b) +C, a≠0
ax b
a
a
dx
1
1
∫
arcsin
sin(ax+b) +C, a≠0
dx =
ax b C , a≠0
∫ cos(ax+b)dx =
1− ax b2
a
a
dx
1
1
−1
∫
ln
dx =
ax b ax b21 , a≠0 ∫
dx =
cot(ax+b) +C , a≠0
1 ax b2
a
sin2 ax b
a
1
1
1
∫
dx =
tg(ax+b) +C , a≠0
dx =arcsinx+C, a≠0
∫
1− x 2
cos2 ax b
a
1
∫ arctgxdx= xarctgx - ln
∫
x 21 +C
dx =ln(x+ x 21 ) +C
1 x 2
1
∫
+C, m≠1 i a≠0
dx =ln|x+ x 2−1 |+C, |x|>1
∫ max b dx= max b x 2−1
alnm
1
∫
+C, m≠1 i m>0
dx =ln|x+ x 2− a 2 |+C, a≠0
∫ mx dx= mx x 2− a 2
lnm
1
x
∫lnxdx= xlnx -c +C
∫
dx =arcsin
+C, a>00
a 2− x 2
a