POCHODNE
GRANICE POD. WYRAŻEŃ ( x-_>0)
Funkcja Pochodna
Uwagi
lim x1
1
x
=e
x-->(+/-)∞
c
0
c<=>R
lim
sinx
x
= 1
lim 1
1
x
x
= e
x
a
ax
a-1
a<=>R
lim
tgx
x
= 1
lim 1 a
x
x
= e
a
a
x
a
x
lna
a>0, x<=>R
lim
arcsinx
x
= 1
e
x
ex
x<=>R
lim
arctgx
x
= 1
log
a
x
1
/
xlna
0<a≠1, x>0
lim e
x
−
1
x
= 1
lnx
1
/
x
x>0
lim
ln x 1
x
= 1
sinx
cosx
x<=>R
lim a
x
−
1
x
= lna
cosx
-sinx
x<=>R
lim
log
a
1x
x
=
1
lna
tgx
1
/
cos
2
x
x≠90
Lim
x1
a
−
1
x
= a
ctgx
-(
1
/
sin
2
x
)
x≠180
arcsinx
1
/√
1-x
2
x<=>(-1;1)
arccosx
-(1
/√
1-x
2)
x<=>(-1;1)
arctg
1
/
1+x
2
x<=>R
arcctg
-(
1
/
1+x
2
)
x<=>R
<=> - należy.
∫ 0dx=C
∫ e
axb
dx =
1
a
e
axb
+C, a≠0
∫ dx=x+C
∫
e
x
= e
x
+C
∫ xdx=
1
2
x
2
+C
∫
dx
1x
2
dx = arctanx +C
∫ x
n
dx=
1
n1
x
n1
+C, n≠0
∫
dx
1 axb
2
dx =
1
a
arctan (ax+b)+C, a≠0
∫
1
x
dx=ln|x|+C
∫
dx
a
2
x
2
dx =
1
a
arctan
x
a
+C, a≠0
∫
1
x
2
dx = -
1
x
+C
∫
dx
a
2
−
x
2
dx =
1
2a
ln
∣
ax
a−x
∣
+C, a>0 i |x|≠0
∫
f ' x
f x
dx = ln|f(x)|+C
∫
dx
axb
dx =
1
a
ln|ax+b|+C, a≠0
∫
x dx =
2
3
x
x +C
∫
dx
ax b
2
dx = -
1
a axb
+C
∫
dx
x
dx = 2
x +C
∫
1
sin
2
x
dx = -cotx +C
∫ (ax+b)dx =
a
2
x
2
+bx+C
∫
1
cos
2
x
dx = tgx +C
∫ axb
n
dx=
1
a n1
axb
n1
+C, a≠0, n≠-1
∫ sinxdx = -cosx +C
∫
axb dx=
2
3a
axb
axb +C, a≠0
∫ cosxdx = sinx +C
∫
1
axb
dx = -
2
axb
a
+C, a≠0
∫ sin(ax+b)dx = -
1
a
cos(ax+b) +C, a≠0
∫
dx
1− axb
2
dx =
1
a
arcsin ax bC , a≠0
∫ cos(ax+b)dx =
1
a
sin(ax+b) +C, a≠0
∫
dx
1 axb
2
dx =
1
a
ln axb
axb
2
1 , a≠0
∫
1
sin
2
axb
dx =
−
1
a
cot(ax+b) +C , a≠0
∫
1
1−x
2
dx =arcsinx+C, a≠0
∫
1
cos
2
axb
dx =
1
a
tg(ax+b) +C , a≠0
∫
1
1x
2
dx =ln(x+
x
2
1 ) +C
∫ arctgxdx= xarctgx - ln
x
2
1 +C
∫
1
x
2
−
1
dx =ln|x+
x
2
−
1
|+C, |x|>1
∫
m
axb
dx= m
axb
alnm
+C, m≠1 i a≠0
∫
1
x
2
−
a
2
dx =ln|x+
x
2
−
a
2
|+C, a≠0
∫ m
x
dx= m
x
lnm
+C, m≠1 i m>0
∫
1
a
2
−
x
2
dx =arcsin
x
a
+C, a>00
∫lnxdx= xlnx -c +C