Chapt15


DODATEK

TABLICY CHARAKTERÓW GRUP PUNKTOWYCH

C2

E 0x01 graphic

fα

A

+1 +1

z, x2, Rz

B

+1 -1

X, y, Rx, Ry

C3

E 0x01 graphic
0x01 graphic

fα

A

+1 +1 +1

z, Rz

ε

+1 τ τ*

x+iy, Rx+iRy

ε*

+1 τ* τ

x-iy, Rx-iRy

0x01 graphic

C4

E 0x01 graphic
0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1

z, Rz

B

+1 -1 +1 -1

ε

+1 -i -1 +i

x+iy, Rx+iRy

ε*

+1 i -1 -i

x-iy, Rx-iRy

C5

E C5 0x01 graphic
0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1 +1

z, Rz

ε1

+1 τ τ22)* τ*

x+iy, Rx+iRy

ε*1

+1 τ* (τ*)2 τ2 τ

x-iy, Rx-iRy

ε2

+1 τ2 τ* τ (τ2)*

ε*2

+1 (τ2)* τ τ* τ2

0x01 graphic

C6

E C6 0x01 graphic
0x01 graphic
0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1 +1 +1

z, Rz

B

+1 -1 +1 -1 +1 -1

ε1

+1 τ -τ* -1 -τ τ*

x+iy, Rx+iRy

ε*1

+1 τ* -τ -1 -τ* τ

x-iy, Rx-iRy

ε2

+1 -τ* -τ +1 -τ* -τ

ε*2

+1 -τ -τ* +1 -τ -τ*

0x01 graphic

C2v

E 0x01 graphic
0x01 graphic
0x01 graphic

fα

A1

+1 +1 +1 +1

z, x2, y2

A2

+1 +1 -1 -1

Rz, xy

B1

+1 -1 +1 -1

x, Ry, xz

B2

+1 -1 -1 +1

y, Rx, yz

C3v

E 20x01 graphic
v

fα

A1

+1 +1 +1

z, x2 + y2

A2

+1 +1 -1

Rz

E

+2 -1 0

x,y; Rx,Ry; x2 - y2,xy; xz,yz.

C4v

E 20x01 graphic
0x01 graphic
vd

fα

A1

+1 +1 +1 +1 +1

z, x2 + y2

A2

+1 +1 +1 -1 -1

Rz

B1

+1 -1 +1 +1 -1

x2 - y2

B2

+1 -1 +1 -1 +1

xy

E

+2 0 -2 0 0

x,y; Rx,Ry; xz,yz

C5v

E 20x01 graphic
0x01 graphic
v

fα

A1

+1 +1 +1 +1

z, x2 + y2

A2

+1 +1 +1 -1

Rz

E1

+2 0x01 graphic
0x01 graphic
0

x,y; Rx,Ry; xz,yz

E2

+2 0x01 graphic
0x01 graphic
0

x2 - y2,xy

C6v

E 20x01 graphic
20x01 graphic
0x01 graphic
vv

fα

A1

+1 +1 +1 +1 +1 +1

z, x2 + y2

A2

+1 +1 +1 +1 -1 -1

Rz

B1

+1 -1 +1 -1 +1 -1

B2

+1 -1 +1 -1 -1 +1

E1

+2 +1 -1 -2 0 0

x,y; Rx,Ry; xz,yz

E2

+2 -1 -1 +2 0 0

x2 - y2,xy

Ci

E i

fα

Ag

+1 +1

xy,xz,yz, Rx,Ry,Rz

Au

+1 -1

x,y,z

S4

E S4 0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1

Rz, x2 + y2

B

+1 -1 +1 -1

z, x2 - y2,xy

ε

+1 τ -1 τ*

x+iy

ε*

+1 τ* -1 τ

X-iy

τ = 0x01 graphic

S6

E 0x01 graphic
0x01 graphic
i 0x01 graphic
S6

fα

Ag

+1 +1 +1 +1 +1 +1

Rz

Au

+1 +1 +1 -1 -1 -1

z

εg

+1 τ τ* +1 τ τ*

ε*g

+1 τ* τ +1 τ* τ

εu

+1 τ τ* -1 -τ -τ*

x+iy

ε*g

x-iy

τ = 0x01 graphic

S8

E S8 0x01 graphic
0x01 graphic
C2 0x01 graphic
0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1 +1 +1 +1 +1

Rz

B

+1 -1 +1 -1 +1 -1 +1 -1

z

ε1

+1 τ i -τ* -1 -τ -i τ*

x+iy

ε1*

+1 τ* -i -τ -1 -τ* i τ

x-iy

ε2

+1 i -1 -i +1 i -1 -i

ε2*

+1 -i -1 i +1 -i -1 i

ε3

+1 -τ* -i τ -1 τ* i -τ

ε3*

+1 -τ i τ* -1 τ -i -τ*

τ = 0x01 graphic

Cs

E σ

fα

A'

+1 +1

x,y,Rz, x2 - y2,xy

A''

+1 -1

z,xz,yz, Rx,Ry

C2h

E 0x01 graphic
i σh

fα

Ag

+1 +1 +1 +1

Rz, xy

Au

+1 +1 -1 -1

z

Bg

+1 -1 +1 -1

Rx,Ry, xz,yz

Bu

+1 -1 -1 +1

x,y

C3h

E 0x01 graphic
0x01 graphic
σh S3 0x01 graphic

fα

A'

+1 +1 +1 +1 +1 +1

Rz, x2 + y2

A''

+1 +1 +1 -1 -1 -1

z

ε1

+1 τ τ* +1 τ τ*

x+iy

ε1*

+1 τ* τ +1 τ* τ

x-iy

ε2

+1 τ τ* -1 -τ -τ*

Rx + iRy

ε2*

+1 τ* τ -1 -τ* -τ

Rx - iRy

C4h

E 0x01 graphic
C2 0x01 graphic
i 0x01 graphic
σh S4

fα

Ag

+1 +1 +1 +1 +1 +1 +1 +1

Rz, x2 + y2

Au

+1 +1 +1 +1 -1 -1 -1 -1

z

Bg

+1 -1 +1 -1 +1 -1 +1 -1

x2 - y2,xy

Bu

+1 -1 +1 -1 -1 +1 -1 +1

εg

+1 +i -1 -i +1 +i -1 -i

Rx + iRy

εg*

+1 -i -1 i +1 -i -1 +i

Rx - iRy

εu

+1 +i -1 -i -1 -i +1 +i

x+iy

εu*

+1 -i -1 i -1 +i +1 -i

x-iy

D2

E 0x01 graphic
0x01 graphic
0x01 graphic

fα

A

+1 +1 +1 +1

x2, y2, z2

B1

+1 +1 -1 -1

z, xy, Rz

B2

+1 -1 +1 -1

y, xz, Ry

B3

+1 -1 -1 +1

x, yz, Rx

D3

E 20x01 graphic
3C2

fα

A1

+1 +1 +1

x2 + y2, z2

A2

+1 +1 -1

z, Rz

E

+2 -1 0

x2 - y2,xy; xz,yz;

x,y; Rx, Ry

D4

E 20x01 graphic
0x01 graphic
20x01 graphic
20x01 graphic

fα

A1

+1 +1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 -1 -1

z, Rz

B1

+1 -1 +1 +1 -1

x2 - y2

B2

+1 -1 +1 -1 +1

xy

E

+2 0 -2 0 0

x,y; Rx,Ry; xz,yz

D5

E 20x01 graphic
20x01 graphic
5C2

fα

A1

+1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 -1

z, Rz

E1

+2 20x01 graphic
20x01 graphic
0

x,y; Rx,Ry; xz,yz

E2

+2 20x01 graphic
20x01 graphic
0

x2 - y2,xy

D6

E 20x01 graphic
2С3 0x01 graphic
30x01 graphic
30x01 graphic

fα

A1

+1 +1 +1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 +1 -1 -1

z, Rz

B1

+1 -1 +1 -1 +1 -1

B2

+1 -1 +1 -1 -1 +1

E1

+2 +1 -1 -2 0 0

x,y; Rx,Ry; xz,yz

E2

+2 -1 -1 +2 0 0

x2 - y2,xy

D2d

E 2S4 0x01 graphic
20x01 graphic
d

fα

A1

+1 +1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 -1 -1

Rz

B1

+1 -1 +1 +1 -1

x2 - y2

B2

+1 -1 +1 -1 +1

z, xy

E

+2 0 -2 0 0

x,y; Rx,Ry; xz,yz

D3d

E 2С3 3C2 i 2S6d

fα

A1g

+1 +1 +1 +1 +1 +1

x2 + y2, z2

A2g

+1 +1 -1 +1 +1 -1

Rz

A1u

+1 +1 +1 -1 -1 -1

A2u

+1 +1 -1 -1 -1 +1

z

Eg

+2 -1 0 +2 -1 0

Rx,Ry; xz,yz; x2 - y2,xy

Eu

+2 -1 0 -2 +1 0

x,y

D4d

E 2S8 2C4 20x01 graphic
C2 40x01 graphic
d

fα

A1

+1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 +1 +1 -1 -1

Rz

B1

+1 -1 +1 -1 +1 +1 -1

B2

+1 -1 +1 -1 +1 -1 +1

z

E1

+2 τ 0 -τ -2 0 0

x,y

E2

+2 0 -2 0 +2 0 0

x2 - y2,xy

E3

+2 -τ 0 τ -2 0 0

Rx,Ry; xz,yz

τ = 0x01 graphic

D5d

E 2C5 20x01 graphic
5C2 i 20x01 graphic
2S10d

fα

A1g

+1 +1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

A2g

+1 +1 +1 -1 +1 +1 +1 -1

Rz

A1u

+1 +1 +1 +1 -1 -1 -1 -1

A2u

+1 +1 +1 -1 -1 -1 -1 +1

z

E1g

+2 2τ 2θ 0 +2 2τ 2θ 0

Rx,Ry; xz,yz

E2g

+2 2θ 2τ 0 +2 2θ 2τ 0

x2 - y2,xy

E1u

+2 2τ 2θ 0 -2 -2τ -2θ 0

x,y

E2u

+2 2θ 2τ 0 -2 -2θ -2τ 0

τ = 0x01 graphic
; θ = 0x01 graphic
.

D6d

E 2S12 2C6 2S4 2С3 20x01 graphic
C2 60x01 graphic
d

fα

A1

+1 +1 +1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

A2

+1 +1 +1 +1 +1 +1 +1 -1 -1

Rz

B1

+1 -1 +1 -1 +1 -1 +1 +1 -1

B2

+1 -1 +1 -1 +1 -1 +1 -1 +1

z

E1

+2 +τ +1 0 -1 -τ -2 0 0

x,y

E2

+2 +1 -1 -2 -1 +1 +2 0 0

x2 - y2,xy

E3

+2 0 -2 0 +2 0 -2 0 0

E4

+2 -1 -1 +2 -1 -1 +2 0 0

E5

+2 -τ +1 0 -1 τ -2 0 0

Rx,Ry; xz,yz

τ = 0x01 graphic

D2h

E 0x01 graphic
0x01 graphic
0x01 graphic
i σ(xy) σ(xz) σ(yz)

fα

Ag

+1 +1 +1 +1 +1 +1 +1 +1

x2; y2; z2

Au

+1 +1 +1 +1 -1 -1 -1 -1

B1g

+1 +1 -1 -1 +1 +1 -1 -1

xy; Rz

B1u

+1 +1 -1 -1 -1 -1 +1 +1

z

B2g

+1 -1 +1 -1 +1 -1 +1 -1

xz; Ry

B2u

+1 -1 +1 -1 -1 +1 -1 +1

y

B3g

+1 -1 -1 +1 +1 -1 -1 +1

yz; Rx

B3u

+1 -1 -1 +1 -1 +1 +1 -1

x

D3h

E 20x01 graphic
3C2 0x01 graphic
2S3v

fα

0x01 graphic

+1 +1 +1 +1 +1 +1

x2 + y2, z2

0x01 graphic

+1 +1 -1 +1 +1 -1

Rz

0x01 graphic

+1 +1 +1 -1 -1 -1

0x01 graphic

+1 +1 -1 -1 -1 +1

z

E'

+2 -1 0 +2 -1 0

x,y; x2 - y2,xy

E''

+2 -1 0 -2 +1 0

Rx,Ry; xz,yz

D4h

E 20x01 graphic
C2 20x01 graphic
20x01 graphic
i 2S4 σhvd

fα

A1g

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

A1u

+1 +1 +1 +1 +1 -1 -1 -1 -1 -1

A2g

+1 +1 +1 -1 -1 +1 +1 +1 -1 -1

Rz

A2u

+1 +1 +1 -1 -1 -1 -1 -1 +1 +1

z

B1g

+1 -1 +1 +1 -1 +1 -1 +1 +1 -1

x2 - y2

B1u

+1 -1 +1 +1 -1 -1 +1 -1 -1 +1

B2g

+1 -1 +1 -1 +1 +1 -1 +1 -1 +1

xy

B2u

+1 -1 +1 -1 +1 -1 +1 -1 +1 -1

Eg

+2 0 -2 0 0 +2 0 -2 0 0

Rx,Ry; xz,yz

Eu

+2 0 -2 0 0 -2 0 +2 0 0

x,y

D5h

E 20x01 graphic
20x01 graphic
5C2 σh 2S5 20x01 graphic
v

fα

0x01 graphic

+1 +1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

0x01 graphic

+1 +1 +1 +1 -1 -1 -1 -1

0x01 graphic

+1 +1 +1 -1 +1 +1 +1 -1

Rz

0x01 graphic

+1 +1 +1 -1 -1 -1 -1 +1

z

0x01 graphic

+2 2τ 2θ 0 +2 2τ 2θ 0

x,y

0x01 graphic

+2 2τ 2θ 0 -2 -2τ -2θ 0

Rx,Ry; xz,yz

0x01 graphic

+2 2θ 2τ 0 +2 2θ 2τ 0

x2 - y2,xy

0x01 graphic

+2 2θ 2τ 0 -2 -2θ -2τ 0

τ = 0x01 graphic
; θ = 0x01 graphic
.

D6h

E 20x01 graphic
2C3 C2 30x01 graphic
30x01 graphic
i 2S3 2S6 σh σdv

fα

A1g

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x2 + y2, z2

A1u

+1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1

A2g

+1 +1 +1 +1 -1 -1 +1 +1 +1 +1 -1 -1

Rz

A2u

+1 +1 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1

z

B1g

+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

B1u

+1 -1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1

B2g

+1 -1 +1 -1 -1 +1 +1 -1 +1 -1 -1 +1

B2u

+1 -1 +1 -1 -1 +1 -1 +1 -1 +1 +1 -1

E1g

+2 +1 -1 -2 0 0 +2 +1 -1 -2 0 0

Rx,Ry; xz,yz

E1u

+2 +1 -1 -2 0 0 -2 -1 +1 +2 0 0

x,y

E2g

+2 -1 -1 +2 0 0 +2 -1 -1 +2 0 0

x2 - y2,xy

E2u

+2 -1 -1 +2 0 0 -2 +1 +1 -2 0 0

Cv

E 2R(ϕ,z) 2R(2ϕ,z)............ ∞σv

fα

Σ+

+1 +1 +1 ………… .+1

z; x2 + y2

Σ-

+1 +1 +1 …………. -1

Rz

Π

+2 2cosϕ 2cos2ϕ…………..0

x,y; xz,yz; Rx,Ry

Δ

+2 2cos2ϕ 2cos3ϕ……….. ...0

x2 - y2,xy

Φ

+2 2cos3ϕ 2cos4ϕ…………..0

…..

…………………………………………

Dv

E 2R(ϕ,z)....... ∞σv i 2S(ϕ,z)…. ∞ C2

fα

0x01 graphic

+1 +1 ……….+1 +1 +1 ………+1

x2 + y2 +z2

0x01 graphic

+1 +1 ……….-1 +1 +1 ………-1

Rz

0x01 graphic

+1 +1 ……….+1 -1 -1 ………-1

z

0x01 graphic

+1 +1 ……….-1 -1 -1 ………+1

Πg

+2 +2 cosϕ……...0 +2 +2 cosϕ…......0

xz,yz; Rx,Ry

Πu

+2 +2 cosϕ……...0 -2 -2 cosϕ……...0

x,y

Δg

+2 +2 cos2ϕ…….0 +2 +2 cos2ϕ……0

x2 - y2,xy

Δu

+2 +2 cos2ϕ…….0 -2 -2 cosϕ……..0

…….

…………………………………………..

Td

E 8C3 3 C2 6S4d

fα

A1

+1 +1 +1 +1 +1

x2 + y2 +z2

A2

+1 +1 +1 +1 +1

E

+2 -1 +2 0 0

x2 - y2,3z2-r2

T1

+3 0 -1 -1 +1

Rx,Ry, Rz

T2

+3 0 -1 +1 -1

x,y,z; xy,xz,yz

Oh

E 8C3 6C2 6C4 30x01 graphic
i 6S4 8 S6hd

fα

A1g

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x2 + y2 +z2

A2g

+1 +1 -1 -1 +1 +1 -1 +1 +1 -1

A1u

+1 +1 +1 +1 +1 -1 -1 -1 -1 -1

A2u

+1 +1 -1 -1 +1 -1 +1 -1 -1 +1

Eg

+2 -1 0 0 +2 +2 0 -1 +2 0

x2 - y2,3z2-r2

Eu

+2 -1 0 0 +2 -2 0 +1 -2 0

T1g

+3 0 -1 +1 -1 +3 +1 0 -1 -1

Rx,Ry, Rz

T2g

+3 0 +1 -1 -1 +3 +1 0 -1 +1

xy,xz,yz

T1u

+3 0 -1 +1 -1 -3 -1 0 +1 +1

x,y,z

T2u

+3 0 +1 -1 -1 -3 +1 0 +1 -1

Ih

E 12C5 120x01 graphic
20C3 15C2 i 120x01 graphic
12S10 20S3 15σv

fα

Ag

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x2 + y2 +z2

Au

+1 +1 +1 +1 +1 -1 -1 -1 -1 -1

T1g

+3 +τ 1-τ 0 -1 +3 τ 1-τ 0 -1

Rx,Ry, Rz

T2g

+3 1-τ +τ 0 -1 +3 1-τ +τ 0 +1

T1u

+3 +τ 1-τ 0 -1 -3 -τ τ-1 0 +1

x,y,z

T2u

+3 1-τ +τ 0 -1 -3 τ-1 -τ 0 +1

x3,y3,z3

Gg

+4 -1 -1 +1 0 +4 -1 -1 +1 0

Gu

+4 -1 -1 +1 0 -4 +1 +1 -1 0

y(x2-z2), x(z2-y2), z((y2-x2)

Hg

+5 0 0 -1 +1 +5 0 0 -1 +1

2z2-x2-y2,

x2 - y2,xy,

xz,yz

Hu

+5 0 0 -1 +1 -5 0 0 +1 -1

τ = 0x01 graphic

BIBLOGRAFIA

  1. Włodzimierz Kołos, Joanna Sadlej. Atom i cząsteczka. Wydawnictwo naukowo-techniczne, 2007, 440 stron.

  2. F. Albert Cotton. Teoria grup - Zastosowania w chemii. PWN, Warszawa, 1973.

  3. Ronald C. King, Mirosław Bylicki, Jacek Karwowski. Symmetry, Spectroscopy and SCHUR. Proceeding of the Professor Brian G. Wybourne. Toruń, 2005, 382 strony.

  4. Alojzy Gołębiewski. Chemia kwantowa związków organicznych. PWN, Warszawa, 1973.

  5. Marek T. Pawlikowski. Wstęp do teoretycznej spektroskopii molekularnej. Teoria grup. Wydawnictwo Uniwersytetu Jagiellońskiego, 2007, 360 stron.

  6. Joanna Sadlej. Spektroskopia molekularna. Wydawnictwo naukowo-techniczne, 2002, 495 stron.

  7. K. Nakamoto. Infrared spectra of Inorganic and Coordination Compounds. A. Willey, New York, 1997.

  8. W. B. Smith. Introduction to Theoretical Organic Chemistry and molecular Modelling. Verlag Chemie. New York, 1996.

  9. R. B. Woodward, R. Hoffmann. The Conservation of Orbital Symmetry. Verlag Chemie. Weinheim/Bergstr. 1970.

SPIS TREŚCI

Wstęp 3

Zasadnicze oznaczenia i skróty 4

Rozdział 1. Elementy formalnej teorii grup 5

§1. Grupa 5

§ 2. Właściwości najprostsze grup 5

§ 3. Przykłady grup 6

§ 4. Podgrupa 7

§ 5. Rząd elementu. Grupy cykliczne 8

§ 6. Elementy sprzężone i klasy 9

§ 7. Podgrupa niezmienna 10

§ 8. Czynnik-grupa 10

§ 9. Homomorfizm i izomorfizm grup 10

§ 10. Właściwości homomorfizmu

11

§ 11. Iloczyn kartezjański grup 12

Rozdział 2. Grupy punktowe

13

§ 1. Przykłady grup. Cn 13

§ 2. Grupy Cnv 14

§ 3. Grupy Cnh 18

§ 4. Grupy Dn 19

§ 5. Grupy Dnd 21

§ 6. Grupy Dnh 24

§ 7. Grupy S2n 26

§ 8. Punktowe grupy sześcienne 26

§ 9. Punktowe grupy dwudziestościanowe 28

§ 10. Grupy nieprzerwane 29

Rozdział 3. Grupy macierzy

31

§ 1. Grupy kwadratowych macierzy nieosobliwych

31

§ 2. Macierzy punktowych zmian współrzędnych 32

§ 3. Niektóre specjalne rodzaje macierzy 35

§ 4. Iloczyn skalarny 36

Rozdział 4. Teoria reprezentacji liniowych 40

§ 1. Reprezentacja grupy 40

§ 2. Przykłady reprezentacji. Reprezentacja grupy symetrii równania Schroedingera 41

§ 3. Reprezentacje przywiedlne i nieprzywiedlne 43

§ 4. Pierwszy lemat Schura 46

§ 5. Drugi lemat Schura 47

§ 6. Relacje ortogonalności 48

§ 7. Charaktery reprezentacji 50

§ 8. Reprezentacja regularna 53

§ 9. Ilość nie ekwiwalentnych reprezentacji nieprzywiedlnych 53

§ 10. Obliczenie charakterów reprezentacji nieprzywiedlnych 55

Rozdział 5. Kompozycje reprezentacji 58

§ 1. Reprezentacje nieprzywiedlne iloczynu kartezjańskiego grup 58

§ 2. Kartezjański (kroneckerowski) iloczyn reprezentacji 60

§ 3. Symetryzowany i anty symetryzowany iloczyny

reprezentacji 61

§ 4. Funkcje podstawowe reprezentacji nieprzywiedlnych 66

§ 5. Twierdzenie Wignera 67

Rozdział 6. Wykorzystanie teorii reprezentacji grup skończonych 75

§ 1. Teoria zaburzeń 75

§ 2. Wykorzystanie teorii grup w problemach spektroskopii

drgającej 82

§ 3. Budowa współrzędnych symetryzowanych (współrzędnych

symetrii) 96

§ 4. Reguły wyboru dla widm IR i KR 101

§ 5. Przejawy spektralne oddziaływań międzymolekularnych

105

§ 6. Wyznaczenie kształtu molekuł 107

§ 7. Reguły wyboru dla częstotliwości składanych. Warunek

możliwości rezonansu Fermiego 108

§ 8. Elektronowe widma pochłaniania 111

§ 9. Klasyfikacja stanów 121

Rozdział 7. Symetria i zdolność reakcyjna związków

organicznych 126

§ 1. Reakcje elektrocykliczne 127

§ 2. Przegrupowania sigmatropne 132

§ 3. Reakcje cykłoprzyłączenia 135

§ 4. Uogólnienie. Reakcje perycykliczne 139

Rozdział 8. Elementy teorii reprezentacji grup

nieprzerwanych 143

§ 1. Określenie, przykłady 143

§ 2. Dwuwymiarowe grupy rotacji i odbić 147

§ 3. Reprezentacje nieprzywiedlne grupy rotacji

trуjwymiarowej 155

§ 4. Wyprowadzenie reprezentacji nieprzywiedlnych grupy O(3)

z wykorzystaniem operatorуw infinitezymalnych 158

§ 5. Wykorzystywanie teorii grupy SO(3) w teorii

atomуw 161

DODATEK. Tablicy charakterów grup punktowych 168

Bibliografia 178

180



Wyszukiwarka

Podobne podstrony:
CHAPT14 IBS
Chapt14
Chapt12
Chapt18[1]
Chapt15[1]
CHAPT11 sat nav
CHAPT12 hyperbolic
Chapt11
Chapt13
Chapt1
Chapt17[1]
CHAPT19 almanac
CHAPT13 radar nav
chapt15 Nav astronomy
CHAPT10 radio waves
CHAPT18 time
CHAPT16 celestial
Chapt19[1]

więcej podobnych podstron