DODATEK
TABLICY CHARAKTERÓW GRUP PUNKTOWYCH
C2 |
E |
fα |
A |
+1 +1 |
z, x2, Rz |
B |
+1 -1 |
X, y, Rx, Ry |
C3 |
E |
fα |
A |
+1 +1 +1 |
z, Rz |
ε |
+1 τ τ* |
x+iy, Rx+iRy |
ε* |
+1 τ* τ |
x-iy, Rx-iRy |
C4 |
E |
fα |
A |
+1 +1 +1 +1 |
z, Rz |
B |
+1 -1 +1 -1 |
|
ε |
+1 -i -1 +i |
x+iy, Rx+iRy |
ε* |
+1 i -1 -i |
x-iy, Rx-iRy |
C5 |
E C5 |
fα |
A |
+1 +1 +1 +1 +1 |
z, Rz |
ε1 |
+1 τ τ2 (τ2)* τ* |
x+iy, Rx+iRy |
ε*1 |
+1 τ* (τ*)2 τ2 τ |
x-iy, Rx-iRy |
ε2 |
+1 τ2 τ* τ (τ2)* |
|
ε*2 |
+1 (τ2)* τ τ* τ2 |
|
C6 |
E C6 |
fα |
A |
+1 +1 +1 +1 +1 +1 |
z, Rz |
B |
+1 -1 +1 -1 +1 -1 |
|
ε1 |
+1 τ -τ* -1 -τ τ* |
x+iy, Rx+iRy |
ε*1 |
+1 τ* -τ -1 -τ* τ |
x-iy, Rx-iRy |
ε2 |
+1 -τ* -τ +1 -τ* -τ |
|
ε*2 |
+1 -τ -τ* +1 -τ -τ* |
|
C2v |
E |
fα |
A1 |
+1 +1 +1 +1 |
z, x2, y2 |
A2 |
+1 +1 -1 -1 |
Rz, xy |
B1 |
+1 -1 +1 -1 |
x, Ry, xz |
B2 |
+1 -1 -1 +1 |
y, Rx, yz |
C3v |
E 2 |
fα |
A1 |
+1 +1 +1 |
z, x2 + y2 |
A2 |
+1 +1 -1 |
Rz |
E |
+2 -1 0 |
x,y; Rx,Ry; x2 - y2,xy; xz,yz. |
C4v |
E 2 |
fα |
A1 |
+1 +1 +1 +1 +1 |
z, x2 + y2 |
A2 |
+1 +1 +1 -1 -1 |
Rz |
B1 |
+1 -1 +1 +1 -1 |
x2 - y2 |
B2 |
+1 -1 +1 -1 +1 |
xy |
E |
+2 0 -2 0 0 |
x,y; Rx,Ry; xz,yz |
C5v |
E 2 |
fα |
A1 |
+1 +1 +1 +1 |
z, x2 + y2 |
A2 |
+1 +1 +1 -1 |
Rz |
E1 |
+2 |
x,y; Rx,Ry; xz,yz |
E2 |
+2 |
x2 - y2,xy |
C6v |
E 2 |
fα |
A1 |
+1 +1 +1 +1 +1 +1 |
z, x2 + y2 |
A2 |
+1 +1 +1 +1 -1 -1 |
Rz |
B1 |
+1 -1 +1 -1 +1 -1 |
|
B2 |
+1 -1 +1 -1 -1 +1 |
|
E1 |
+2 +1 -1 -2 0 0 |
x,y; Rx,Ry; xz,yz |
E2 |
+2 -1 -1 +2 0 0 |
x2 - y2,xy |
Ci |
E i |
fα |
Ag |
+1 +1 |
xy,xz,yz, Rx,Ry,Rz |
Au |
+1 -1 |
x,y,z |
S4 |
E S4 |
fα |
A |
+1 +1 +1 +1 |
Rz, x2 + y2 |
B |
+1 -1 +1 -1 |
z, x2 - y2,xy |
ε |
+1 τ -1 τ* |
x+iy |
ε* |
+1 τ* -1 τ |
X-iy |
τ =
S6 |
E |
fα |
Ag |
+1 +1 +1 +1 +1 +1 |
Rz |
Au |
+1 +1 +1 -1 -1 -1 |
z |
εg |
+1 τ τ* +1 τ τ* |
|
ε*g |
+1 τ* τ +1 τ* τ |
|
εu |
+1 τ τ* -1 -τ -τ* |
x+iy |
ε*g |
|
x-iy |
τ =
S8 |
E S8 |
fα |
A |
+1 +1 +1 +1 +1 +1 +1 +1 |
Rz |
B |
+1 -1 +1 -1 +1 -1 +1 -1 |
z |
ε1 |
+1 τ i -τ* -1 -τ -i τ* |
x+iy |
ε1* |
+1 τ* -i -τ -1 -τ* i τ |
x-iy |
ε2 |
+1 i -1 -i +1 i -1 -i |
|
ε2* |
+1 -i -1 i +1 -i -1 i |
|
ε3 |
+1 -τ* -i τ -1 τ* i -τ |
|
ε3* |
+1 -τ i τ* -1 τ -i -τ* |
|
τ =
Cs |
E σ |
fα |
A' |
+1 +1 |
x,y,Rz, x2 - y2,xy |
A'' |
+1 -1 |
z,xz,yz, Rx,Ry |
C2h |
E |
fα |
Ag |
+1 +1 +1 +1 |
Rz, xy |
Au |
+1 +1 -1 -1 |
z |
Bg |
+1 -1 +1 -1 |
Rx,Ry, xz,yz |
Bu |
+1 -1 -1 +1 |
x,y |
C3h |
E |
fα |
A' |
+1 +1 +1 +1 +1 +1 |
Rz, x2 + y2 |
A'' |
+1 +1 +1 -1 -1 -1 |
z |
ε1 |
+1 τ τ* +1 τ τ* |
x+iy |
ε1* |
+1 τ* τ +1 τ* τ |
x-iy |
ε2 |
+1 τ τ* -1 -τ -τ* |
Rx + iRy |
ε2* |
+1 τ* τ -1 -τ* -τ |
Rx - iRy |
C4h |
E |
fα |
Ag |
+1 +1 +1 +1 +1 +1 +1 +1 |
Rz, x2 + y2 |
Au |
+1 +1 +1 +1 -1 -1 -1 -1 |
z |
Bg |
+1 -1 +1 -1 +1 -1 +1 -1 |
x2 - y2,xy |
Bu |
+1 -1 +1 -1 -1 +1 -1 +1 |
|
εg |
+1 +i -1 -i +1 +i -1 -i |
Rx + iRy |
εg* |
+1 -i -1 i +1 -i -1 +i |
Rx - iRy |
εu |
+1 +i -1 -i -1 -i +1 +i |
x+iy |
εu* |
+1 -i -1 i -1 +i +1 -i |
x-iy |
D2 |
E |
fα |
A |
+1 +1 +1 +1 |
x2, y2, z2 |
B1 |
+1 +1 -1 -1 |
z, xy, Rz |
B2 |
+1 -1 +1 -1 |
y, xz, Ry |
B3 |
+1 -1 -1 +1 |
x, yz, Rx |
D3 |
E 2 |
fα |
A1 |
+1 +1 +1 |
x2 + y2, z2 |
A2 |
+1 +1 -1 |
z, Rz |
E |
+2 -1 0 |
x2 - y2,xy; xz,yz; x,y; Rx, Ry |
D4 |
E 2 |
fα |
A1 |
+1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2 |
+1 +1 +1 -1 -1 |
z, Rz |
B1 |
+1 -1 +1 +1 -1 |
x2 - y2 |
B2 |
+1 -1 +1 -1 +1 |
xy |
E |
+2 0 -2 0 0 |
x,y; Rx,Ry; xz,yz |
D5 |
E 2 |
fα |
||
A1 |
+1 +1 +1 +1 |
x2 + y2, z2 |
||
A2 |
+1 +1 +1 -1 |
z, Rz |
||
E1 |
+2 2 |
x,y; Rx,Ry; xz,yz |
||
E2 |
+2 2 |
x2 - y2,xy |
||
D6 |
E 2 |
fα |
||
A1 |
+1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
||
A2 |
+1 +1 +1 +1 -1 -1 |
z, Rz |
||
B1 |
+1 -1 +1 -1 +1 -1 |
|
||
B2 |
+1 -1 +1 -1 -1 +1 |
|
||
E1 |
+2 +1 -1 -2 0 0 |
x,y; Rx,Ry; xz,yz |
||
E2 |
+2 -1 -1 +2 0 0 |
x2 - y2,xy |
D2d |
E 2S4 |
fα |
A1 |
+1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2 |
+1 +1 +1 -1 -1 |
Rz |
B1 |
+1 -1 +1 +1 -1 |
x2 - y2 |
B2 |
+1 -1 +1 -1 +1 |
z, xy |
E |
+2 0 -2 0 0 |
x,y; Rx,Ry; xz,yz |
D3d |
E 2С3 3C2 i 2S6 3σd |
fα |
A1g |
+1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2g |
+1 +1 -1 +1 +1 -1 |
Rz |
A1u |
+1 +1 +1 -1 -1 -1 |
|
A2u |
+1 +1 -1 -1 -1 +1 |
z |
Eg |
+2 -1 0 +2 -1 0 |
Rx,Ry; xz,yz; x2 - y2,xy |
Eu |
+2 -1 0 -2 +1 0 |
x,y |
D4d |
E 2S8 2C4 2 |
fα |
A1 |
+1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2 |
+1 +1 +1 +1 +1 -1 -1 |
Rz |
B1 |
+1 -1 +1 -1 +1 +1 -1 |
|
B2 |
+1 -1 +1 -1 +1 -1 +1 |
z |
E1 |
+2 τ 0 -τ -2 0 0 |
x,y |
E2 |
+2 0 -2 0 +2 0 0 |
x2 - y2,xy |
E3 |
+2 -τ 0 τ -2 0 0 |
Rx,Ry; xz,yz |
τ =
D5d |
E 2C5 2 |
fα |
A1g |
+1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2g |
+1 +1 +1 -1 +1 +1 +1 -1 |
Rz |
A1u |
+1 +1 +1 +1 -1 -1 -1 -1 |
|
A2u |
+1 +1 +1 -1 -1 -1 -1 +1 |
z |
E1g |
+2 2τ 2θ 0 +2 2τ 2θ 0 |
Rx,Ry; xz,yz |
E2g |
+2 2θ 2τ 0 +2 2θ 2τ 0 |
x2 - y2,xy |
E1u |
+2 2τ 2θ 0 -2 -2τ -2θ 0 |
x,y |
E2u |
+2 2θ 2τ 0 -2 -2θ -2τ 0 |
|
τ =
; θ =
.
D6d |
E 2S12 2C6 2S4 2С3 2 |
fα |
A1 |
+1 +1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A2 |
+1 +1 +1 +1 +1 +1 +1 -1 -1 |
Rz |
B1 |
+1 -1 +1 -1 +1 -1 +1 +1 -1 |
|
B2 |
+1 -1 +1 -1 +1 -1 +1 -1 +1 |
z |
E1 |
+2 +τ +1 0 -1 -τ -2 0 0 |
x,y |
E2 |
+2 +1 -1 -2 -1 +1 +2 0 0 |
x2 - y2,xy |
E3 |
+2 0 -2 0 +2 0 -2 0 0 |
|
E4 |
+2 -1 -1 +2 -1 -1 +2 0 0 |
|
E5 |
+2 -τ +1 0 -1 τ -2 0 0 |
Rx,Ry; xz,yz |
τ =
D2h |
E |
fα |
Ag |
+1 +1 +1 +1 +1 +1 +1 +1 |
x2; y2; z2 |
Au |
+1 +1 +1 +1 -1 -1 -1 -1 |
|
B1g |
+1 +1 -1 -1 +1 +1 -1 -1 |
xy; Rz |
B1u |
+1 +1 -1 -1 -1 -1 +1 +1 |
z |
B2g |
+1 -1 +1 -1 +1 -1 +1 -1 |
xz; Ry |
B2u |
+1 -1 +1 -1 -1 +1 -1 +1 |
y |
B3g |
+1 -1 -1 +1 +1 -1 -1 +1 |
yz; Rx |
B3u |
+1 -1 -1 +1 -1 +1 +1 -1 |
x |
D3h |
E 2 |
fα |
|
+1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
|
+1 +1 -1 +1 +1 -1 |
Rz |
|
+1 +1 +1 -1 -1 -1 |
|
|
+1 +1 -1 -1 -1 +1 |
z |
E' |
+2 -1 0 +2 -1 0 |
x,y; x2 - y2,xy |
E'' |
+2 -1 0 -2 +1 0 |
Rx,Ry; xz,yz |
D4h |
E 2 |
fα |
A1g |
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A1u |
+1 +1 +1 +1 +1 -1 -1 -1 -1 -1 |
|
A2g |
+1 +1 +1 -1 -1 +1 +1 +1 -1 -1 |
Rz |
A2u |
+1 +1 +1 -1 -1 -1 -1 -1 +1 +1 |
z |
B1g |
+1 -1 +1 +1 -1 +1 -1 +1 +1 -1 |
x2 - y2 |
B1u |
+1 -1 +1 +1 -1 -1 +1 -1 -1 +1 |
|
B2g |
+1 -1 +1 -1 +1 +1 -1 +1 -1 +1 |
xy |
B2u |
+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 |
|
Eg |
+2 0 -2 0 0 +2 0 -2 0 0 |
Rx,Ry; xz,yz |
Eu |
+2 0 -2 0 0 -2 0 +2 0 0 |
x,y |
D5h |
E 2 |
fα |
|
+1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
|
+1 +1 +1 +1 -1 -1 -1 -1 |
|
|
+1 +1 +1 -1 +1 +1 +1 -1 |
Rz |
|
+1 +1 +1 -1 -1 -1 -1 +1 |
z |
|
+2 2τ 2θ 0 +2 2τ 2θ 0 |
x,y |
|
+2 2τ 2θ 0 -2 -2τ -2θ 0 |
Rx,Ry; xz,yz |
|
+2 2θ 2τ 0 +2 2θ 2τ 0 |
x2 - y2,xy |
|
+2 2θ 2τ 0 -2 -2θ -2τ 0 |
|
τ =
; θ =
.
D6h |
E 2 |
fα |
A1g |
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2, z2 |
A1u |
+1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 |
|
A2g |
+1 +1 +1 +1 -1 -1 +1 +1 +1 +1 -1 -1 |
Rz |
A2u |
+1 +1 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1 |
z |
B1g |
+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 |
|
B1u |
+1 -1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 |
|
B2g |
+1 -1 +1 -1 -1 +1 +1 -1 +1 -1 -1 +1 |
|
B2u |
+1 -1 +1 -1 -1 +1 -1 +1 -1 +1 +1 -1 |
|
E1g |
+2 +1 -1 -2 0 0 +2 +1 -1 -2 0 0 |
Rx,Ry; xz,yz |
E1u |
+2 +1 -1 -2 0 0 -2 -1 +1 +2 0 0 |
x,y |
E2g |
+2 -1 -1 +2 0 0 +2 -1 -1 +2 0 0 |
x2 - y2,xy |
E2u |
+2 -1 -1 +2 0 0 -2 +1 +1 -2 0 0 |
|
C∞v |
E 2R(ϕ,z) 2R(2ϕ,z)............ ∞σv |
fα |
Σ+ |
+1 +1 +1 ………… .+1 |
z; x2 + y2 |
Σ- |
+1 +1 +1 …………. -1 |
Rz |
Π |
+2 2cosϕ 2cos2ϕ…………..0 |
x,y; xz,yz; Rx,Ry |
Δ |
+2 2cos2ϕ 2cos3ϕ……….. ...0 |
x2 - y2,xy |
Φ |
+2 2cos3ϕ 2cos4ϕ…………..0 |
|
….. |
………………………………………… |
|
D∞v |
E 2R(ϕ,z)....... ∞σv i 2S(ϕ,z)…. ∞ C2 |
fα |
|
+1 +1 ……….+1 +1 +1 ………+1 |
x2 + y2 +z2 |
|
+1 +1 ……….-1 +1 +1 ………-1 |
Rz |
|
+1 +1 ……….+1 -1 -1 ………-1 |
z |
|
+1 +1 ……….-1 -1 -1 ………+1 |
|
Πg |
+2 +2 cosϕ……...0 +2 +2 cosϕ…......0 |
xz,yz; Rx,Ry |
Πu |
+2 +2 cosϕ……...0 -2 -2 cosϕ……...0 |
x,y |
Δg |
+2 +2 cos2ϕ…….0 +2 +2 cos2ϕ……0 |
x2 - y2,xy |
Δu |
+2 +2 cos2ϕ…….0 -2 -2 cosϕ……..0 |
|
……. |
………………………………………….. |
|
Td |
E 8C3 3 C2 6S4 6σd |
fα |
A1 |
+1 +1 +1 +1 +1 |
x2 + y2 +z2 |
A2 |
+1 +1 +1 +1 +1 |
|
E |
+2 -1 +2 0 0 |
x2 - y2,3z2-r2 |
T1 |
+3 0 -1 -1 +1 |
Rx,Ry, Rz |
T2 |
+3 0 -1 +1 -1 |
x,y,z; xy,xz,yz |
Oh |
E 8C3 6C2 6C4 3 |
fα |
A1g |
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2 +z2 |
A2g |
+1 +1 -1 -1 +1 +1 -1 +1 +1 -1 |
|
A1u |
+1 +1 +1 +1 +1 -1 -1 -1 -1 -1 |
|
A2u |
+1 +1 -1 -1 +1 -1 +1 -1 -1 +1 |
|
Eg |
+2 -1 0 0 +2 +2 0 -1 +2 0 |
x2 - y2,3z2-r2 |
Eu |
+2 -1 0 0 +2 -2 0 +1 -2 0 |
|
T1g |
+3 0 -1 +1 -1 +3 +1 0 -1 -1 |
Rx,Ry, Rz |
T2g |
+3 0 +1 -1 -1 +3 +1 0 -1 +1 |
xy,xz,yz |
T1u |
+3 0 -1 +1 -1 -3 -1 0 +1 +1 |
x,y,z |
T2u |
+3 0 +1 -1 -1 -3 +1 0 +1 -1 |
|
Ih |
E 12C5 12 |
fα |
Ag |
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 |
x2 + y2 +z2 |
Au |
+1 +1 +1 +1 +1 -1 -1 -1 -1 -1 |
|
T1g |
+3 +τ 1-τ 0 -1 +3 τ 1-τ 0 -1 |
Rx,Ry, Rz |
T2g |
+3 1-τ +τ 0 -1 +3 1-τ +τ 0 +1 |
|
T1u |
+3 +τ 1-τ 0 -1 -3 -τ τ-1 0 +1 |
x,y,z |
T2u |
+3 1-τ +τ 0 -1 -3 τ-1 -τ 0 +1 |
x3,y3,z3 |
Gg |
+4 -1 -1 +1 0 +4 -1 -1 +1 0 |
|
Gu |
+4 -1 -1 +1 0 -4 +1 +1 -1 0 |
y(x2-z2), x(z2-y2), z((y2-x2) |
Hg |
+5 0 0 -1 +1 +5 0 0 -1 +1 |
2z2-x2-y2, x2 - y2,xy, xz,yz |
Hu |
+5 0 0 -1 +1 -5 0 0 +1 -1 |
|
τ =
BIBLOGRAFIA
Włodzimierz Kołos, Joanna Sadlej. Atom i cząsteczka. Wydawnictwo naukowo-techniczne, 2007, 440 stron.
F. Albert Cotton. Teoria grup - Zastosowania w chemii. PWN, Warszawa, 1973.
Ronald C. King, Mirosław Bylicki, Jacek Karwowski. Symmetry, Spectroscopy and SCHUR. Proceeding of the Professor Brian G. Wybourne. Toruń, 2005, 382 strony.
Alojzy Gołębiewski. Chemia kwantowa związków organicznych. PWN, Warszawa, 1973.
Marek T. Pawlikowski. Wstęp do teoretycznej spektroskopii molekularnej. Teoria grup. Wydawnictwo Uniwersytetu Jagiellońskiego, 2007, 360 stron.
Joanna Sadlej. Spektroskopia molekularna. Wydawnictwo naukowo-techniczne, 2002, 495 stron.
K. Nakamoto. Infrared spectra of Inorganic and Coordination Compounds. A. Willey, New York, 1997.
W. B. Smith. Introduction to Theoretical Organic Chemistry and molecular Modelling. Verlag Chemie. New York, 1996.
R. B. Woodward, R. Hoffmann. The Conservation of Orbital Symmetry. Verlag Chemie. Weinheim/Bergstr. 1970.
SPIS TREŚCI
Wstęp 3
Zasadnicze oznaczenia i skróty 4
Rozdział 1. Elementy formalnej teorii grup 5
§1. Grupa 5
§ 2. Właściwości najprostsze grup 5
§ 3. Przykłady grup 6
§ 4. Podgrupa 7
§ 5. Rząd elementu. Grupy cykliczne 8
§ 6. Elementy sprzężone i klasy 9
§ 7. Podgrupa niezmienna 10
§ 8. Czynnik-grupa 10
§ 9. Homomorfizm i izomorfizm grup 10
§ 10. Właściwości homomorfizmu
11
§ 11. Iloczyn kartezjański grup 12
Rozdział 2. Grupy punktowe
13
§ 1. Przykłady grup. Cn 13
§ 2. Grupy Cnv 14
§ 3. Grupy Cnh 18
§ 4. Grupy Dn 19
§ 5. Grupy Dnd 21
§ 6. Grupy Dnh 24
§ 7. Grupy S2n 26
§ 8. Punktowe grupy sześcienne 26
§ 9. Punktowe grupy dwudziestościanowe 28
§ 10. Grupy nieprzerwane 29
Rozdział 3. Grupy macierzy
31
§ 1. Grupy kwadratowych macierzy nieosobliwych
31
§ 2. Macierzy punktowych zmian współrzędnych 32
§ 3. Niektóre specjalne rodzaje macierzy 35
§ 4. Iloczyn skalarny 36
Rozdział 4. Teoria reprezentacji liniowych 40
§ 1. Reprezentacja grupy 40
§ 2. Przykłady reprezentacji. Reprezentacja grupy symetrii równania Schroedingera 41
§ 3. Reprezentacje przywiedlne i nieprzywiedlne 43
§ 4. Pierwszy lemat Schura 46
§ 5. Drugi lemat Schura 47
§ 6. Relacje ortogonalności 48
§ 7. Charaktery reprezentacji 50
§ 8. Reprezentacja regularna 53
§ 9. Ilość nie ekwiwalentnych reprezentacji nieprzywiedlnych 53
§ 10. Obliczenie charakterów reprezentacji nieprzywiedlnych 55
Rozdział 5. Kompozycje reprezentacji 58
§ 1. Reprezentacje nieprzywiedlne iloczynu kartezjańskiego grup 58
§ 2. Kartezjański (kroneckerowski) iloczyn reprezentacji 60
§ 3. Symetryzowany i anty symetryzowany iloczyny
reprezentacji 61
§ 4. Funkcje podstawowe reprezentacji nieprzywiedlnych 66
§ 5. Twierdzenie Wignera 67
Rozdział 6. Wykorzystanie teorii reprezentacji grup skończonych 75
§ 1. Teoria zaburzeń 75
§ 2. Wykorzystanie teorii grup w problemach spektroskopii
drgającej 82
§ 3. Budowa współrzędnych symetryzowanych (współrzędnych
symetrii) 96
§ 4. Reguły wyboru dla widm IR i KR 101
§ 5. Przejawy spektralne oddziaływań międzymolekularnych
105
§ 6. Wyznaczenie kształtu molekuł 107
§ 7. Reguły wyboru dla częstotliwości składanych. Warunek
możliwości rezonansu Fermiego 108
§ 8. Elektronowe widma pochłaniania 111
§ 9. Klasyfikacja stanów 121
Rozdział 7. Symetria i zdolność reakcyjna związków
organicznych 126
§ 1. Reakcje elektrocykliczne 127
§ 2. Przegrupowania sigmatropne 132
§ 3. Reakcje cykłoprzyłączenia 135
§ 4. Uogólnienie. Reakcje perycykliczne 139
Rozdział 8. Elementy teorii reprezentacji grup
nieprzerwanych 143
§ 1. Określenie, przykłady 143
§ 2. Dwuwymiarowe grupy rotacji i odbić 147
§ 3. Reprezentacje nieprzywiedlne grupy rotacji
trуjwymiarowej 155
§ 4. Wyprowadzenie reprezentacji nieprzywiedlnych grupy O(3)
z wykorzystaniem operatorуw infinitezymalnych 158
§ 5. Wykorzystywanie teorii grupy SO(3) w teorii
atomуw 161
DODATEK. Tablicy charakterów grup punktowych 168
Bibliografia 178
180