Natura związków organicznych i ich budowa
Ogólna charakterystyka związków organicznych
Węglowodory alifatyczne
Węglowodory aromatyczne
Struktura związków organicznych
Ogólna charakterystyka związków organicznych
Pierwszą definicję Chemii organicznej podali Gmelin 1848, Kekule 1851 twierdząc że, "Chemia organiczna jest chemią związków węgla" ale definicję Chemii organicznej słuszną do dziś podał Schurlenmer w 1889 r: - "Chemia organiczna jest chemią węglowodorów i ich pochodnych"
Podstawowym pierwiastkiem w połączeniach organicznych jest węgiel. Atomy węgla posiadają zdolność łączenia się pomiędzy sobą w nawet bardzo długie łańcuchy. Te z kolei mogą być proste lub rozgałęzione, a poza tym łańcuch może ulec zamknięciu tworząc pierścień. Oto przykłady.
Ze zdolnością łączenia się atomów węgla pomiędzy sobą wiąże się zagadnienie rzędowości atomu węgla.
atom węgla połączony tylko z jednym atomem węgla określa się jako węgiel pierwszorzędowy
połączony z dwoma atomami węgla - drugorzędowy
połączony z trzema atomami węgla jako trzeciorzędowy
atom węgla połączony z czterema atomami węgla nosi nazwę czwartorzędowego lub węgla "neo"
Podstawową grupą połączeń organicznych są związki zbudowane z atomów węgla i wodoru, nazywane węglowodorami..
Węglowodory ze względu na budowę szkieletu węglowego dzielimy na dwie główne klasy: węglowodory alifatyczne i weglowodory aromatyczne. Węglowodory alifatyczne z kolei dzielą się na alkany, alkeny, alkiny oraz ich analogi pierścieniowe (cykloalkany itd.)
Same węglowodory są substancjami macierzystymi wszystkich związków organicznych, które nazywane są pochodnymi węglowodorów.
Pochodne są to związki, powstałe wskutek podstawienia pojedyńczych atomów wodoru przez inne atomy lub grupy atomów, które noszą nazwę podstawników.Przykład - CH3COOH jest pochodną CH4 (metan). Jeden atom wodoru w CH4 został podstawiony grupą atomów (-COOH).
Inne przykłady:C2H5Cl, C3H7OH, C4H9NO2, C2H5CHO, itd.
Węglowodory alifatyczne
Węglowodory alifatyczne, mogą łączyć sie ze sobą tworząc;
struktury łańcuchowe
struktury cykliczne
Węglowodory posiadające struktury łańcuchowe mogą mieć łańcuchy proste lub rozgałęzione a te z kolei mogą być:
nasycone tzn. atomy węgla połączone są tylko za pomocą wiązań pojedyńczych (-C-C-).
nienasycone tzn. atomy węgla połączone są za pomocą wiązań podwójnych (-C=C-) lub potrójnych. Wiązania wielokrotne (podwójne i potrójne) moga występować w różnych ilościach.
Przy dwóch wiązaniach podwójnych wyróżnia się układy:
układ skumulowany C=C=C
układ sprzężony C=C-C=C
układ izolowany C=C-C-C-C=C
Połączenia cykliczne mogą być trój-, cztero-, pięcio-, sześcio-, .... wieloczłonowe, na przykład:
Węglowodory aromatyczne
Wsród połączeń cyklicznych wyróżnia się połączenia aromatyczne o specyficznym układzie wiązań podwójnych, sprzężonych. Są to połączenia o budowie płaskiej, zawierające elektrony (), których ilość obliczamy zgodnie z regułą Huckla
Reguła Huckla
Układ aromatyczny ma 4n + 2 elektronów (), gdzie n - ilość pierścieni
Przykładem jest węglowodór o nazwie benzen, który posiada 6 elektronów
W takim układzie elektrony mogą przesuwać się wzdłuż łańcucha co prowadzi do wyrównania gęstości elektronowej w całym pierścieniu. Mamy tutaj przypadek delokalizacji elektronów, który przedstawiany jest za pomocą specjalnego symbolu wiązania (kółko). To przesuwanie się elektronów wzdłuż pierścienia, zawdzięczamy obecności wiązania .
|
Wiązanie podwójne składa się z wiązania σ i . Wiązanie jest to wiązanie chemiczne utworzone w wyniku bocznego nakładania się orbitali atomowych. Wiązanie () charakteryzuje się występowaniem maksymalnego zagęszczenia uwspólnionych par elektronów ponad linią łączącą jądra na płaszczyznie przechodzącej przez linię łączącą oba jądra. Wiązanie σ powstaje w wyniku osiowego nakładania się orbitali. Na rysunku linia zielona łącząca atomy A i B. |
Przykład - benzen
|
|
|
Struktura związków organicznych
Najprostszym węglowodorem jest metan o wzorze CH4 i tetraedrycznej strukturze cząsteczki. Taka struktura jest wynikiem hybrydyzacji sp3 w atomie węgla a powstałe orbitale wiążące sp3, skierowane są ku wierzchołkom czworościanu. Takie właśnie rozmieszczenie orbitali umożliwia maksymalne ich oddalenie (rys. 14.1) i przyjęcie struktury tetraedrycznej.
Rys. 14.1 Cząsteczka metanu
Aby każdy z orbitali sp3 utworzył najmocniejsze wiązanie ze sferycznym orbitalem s atomu wodoru, każdy atom wodoru musi znalezć się dokładnie w wierzchołku czworościanu.
Ponieważ atomy węgla i atomy wodoru mają prawie taką samą elektroujemność, dlatego opócz wiązania węgiel - wodór mogą być utworzone wiązania węgiel - węgiel. I dlatego liczba węglowodorów nie ogranicza się tylko do najprostszego węglowodoru CH4, lecz jest możliwy szereg związków, jak np. C2H6 (etan), C3H8 (propan). Szereg nie zatrzymuje sie na propanie, lecz biegnie dalej w sposób nie kończący, przy czym każdy człon ma wzór ogólny CnH2n+2. Mówimy wtedy, że węglowodory tworzą szereg homologiczny. W szeregu homologicznym węglowodory jak ich pochodne, różnią się o stałą różnicę, zwaną różnicą homologiczną, którą jest grupa metylenowa -CH2-.
Przykładem jest szereg homologiczny alkanów, alkenów i alkinów (tablica 12.1)
Tablica 12.1
Szeregi homologiczne węglowodorów (różnica homologiczna - grupa metylowa)
Wzór |
Nazwa |
Wzór |
Nazwa |
Wzór |
Nazwa |
Wzór |
Nazwa |
Alkany |
|
Alkile |
|
Alkeny |
|
Alkiny |
|
CH4 |
Metan |
CH3 |
Metyl |
|
|
|
|
C2H6 |
Etan |
C2H5 |
Etyl |
C2H4 |
Eten, etylen |
C2H2 |
Etyn, acetylen |
C3H8 |
Propan |
C3H7 |
Propyl |
C3H6 |
Propen, propylen |
C3H4 |
Propyn |
C4H10 |
Butan |
C4H9 |
Butyl |
C4H8 |
Buten |
C4H6 |
Butyn |
C5H12 |
Pentan |
C5H11 |
Amyl, Pentyl |
C5H10 |
Penten |
C3H4 |
Pentyn |
C6H14 |
Heksan |
C6H13 |
Heksyl |
C6H12 |
Heksen |
C6H10 |
Heksyn |
C7H16 |
Heptan |
C7H15 |
Heptyn |
C7H14 |
Hepten |
C7H12 |
Heptyn |
C8H18 |
Oktan |
C8H17 |
Oktyl |
C8H16 |
Okten |
C8H14 |
Oktyn |
C9H20 |
Nonan |
C9H19 |
Nonyl |
C9H18 |
Nonen |
C9H16 |
Nonyn |
C10H22 |
Dekan |
C10H21 |
Dekyl |
C10H20 |
Deken |
C10H18 |
Dekyn |
C11H24 |
Undekan |
|
|
|
|
|
|
C12H26 |
Dodekan |
|
|
|
|
|
|
Czytelnik powinien bezwarunkowo zapamiętać nazwy przynajmniej pierwszych dziesięciu alkanów. Jeżeli to uczynił, to w zasadzie nauczył się również nazw pierwszych dziesięciu alkenów, alkinów, alkoholi, itd., ponieważ nazwy wielu klas związków są ściśle z sobą związane. |
Ponadto daje się zauważyć, że wraz ze wzrostem ilości atomów węgla w cząsteczce, wzrasta ilość możliwych przestrzennych rozmieszczeń atomów. Takie związki różniące się przestrzennym rozmieszczeniem atomów nazywa się izomerami. Więcej o izomerii związków organicznych w kolejnym rozdziale.