Poprawa 1.
Obliczanie log(w) i log(p)
Log(w)
Odpowiednio dla każdego W log(w) =
W | log(W) |
---|---|
0,007 | -2,13625 |
0,050 | -1,30245 |
0,092 | -1,03731 |
0,186 | -0,73079 |
0,290 | -0,53769 |
0,473 | -0,32512 |
0,666 | -0,17649 |
0,937 | -0,02823 |
1,324 | 0,121802 |
1,897 | 0,278129 |
Odpowiednio dla każdego P log(p) =
P | log(P) |
---|---|
0,461 | -0,33663 |
1,177 | 0,070939 |
2,181 | 0,338686 |
3,282 | 0,516079 |
4,455 | 0,648883 |
5,860 | 0,767927 |
7,430 | 0,870976 |
9,369 | 0,971671 |
10,293 | 1,012561 |
13,313 | 1,124273 |
Obliczanie niepewności:
logW
$$u_{c}\left( \text{logW} \right) = \sqrt{\sum_{i = 1}^{10}\left( \frac{\partial logW}{\partial W} \bullet u(W) \right)^{2}} = \sqrt{\sum_{i = 1}^{10}\left( \frac{1}{W} \bullet u(W) \right)^{2}} = \sqrt{1,25} = 0,625$$
logP
$$u_{c}\left( \text{logP} \right) = \sqrt{\sum_{i = 1}^{10}\left( \frac{\partial logP}{\partial P} \bullet u(P) \right)^{2}} = \sqrt{\sum_{i = 1}^{10}\left( \frac{1}{P} \bullet u(P) \right)^{2}} = \sqrt{0,205} = 0,1025$$
Wnioski: