mˇj projekt

$\overrightarrow{r} = a\left\lbrack \cos\left( u^{2} \right)\overrightarrow{i} + sin\left( u^{2} \right)\overrightarrow{j} \right\rbrack + u^{1}\left\lbrack \cos\left( u^{2} + \alpha \right)\overrightarrow{i} + sin\left( u^{2} + \alpha \right)\overrightarrow{j} \right\rbrack cos\beta + u^{1}\text{sinβ}\overrightarrow{k}$

gdzie:

u1, u2 współrzędne krzywoliniowe

α −  parametr kątowy; kąt zawarty miedzy rzutem tworzącej na płaszczyznę podstawy XOY a promieniem podstawy

β −  parametr kątowy, określa nachylenie tworzącej do płaszczyzny XOY

a promień podstawy


$$\overrightarrow{r} = a\left\lbrack \cos\left( u^{2} \right)\overrightarrow{i} + sin\left( u^{2} \right)\overrightarrow{j} \right\rbrack + u^{1} \bullet \overrightarrow{k}$$


$$r_{i} = \frac{\partial\overrightarrow{r}}{\partial u^{i}}$$


$$r_{1} = \frac{\partial\overrightarrow{r}}{\partial u^{1}} = \left\lbrack \cos\left( u^{2} + \alpha \right)\overrightarrow{i} + sin\left( u^{2} + \alpha \right)\overrightarrow{j} \right\rbrack cos\beta + sin\beta\overrightarrow{k} = \overrightarrow{k}$$


$$r_{2} = \frac{\partial\overrightarrow{r}}{\partial u^{2}} = a\left\lbrack \operatorname{-sin}\left( u^{2} \right)\overrightarrow{i} + cos\left( u^{2} \right)\overrightarrow{j} \right\rbrack$$


$$g_{11} = \overrightarrow{r_{1}} \bullet \overrightarrow{r_{1}} = \overrightarrow{k} \bullet \overrightarrow{k} = 1$$


$$g_{12} = g_{21} = \overrightarrow{r_{1}} \bullet \overrightarrow{r_{2}} = \overrightarrow{k} \bullet a\left\lbrack \operatorname{-sin}\left( u^{2} \right)\overrightarrow{i} + cos\left( u^{2} \right)\overrightarrow{j} \right\rbrack = 0$$


$$g_{22} = \overrightarrow{r_{2}} \bullet \overrightarrow{r_{2}} = \left( a\left\lbrack \operatorname{-sin}\left( u^{2} \right)\overrightarrow{i} + cos\left( u^{2} \right)\overrightarrow{j} \right\rbrack \right)^{2} = a^{2}\left\lbrack \operatorname{}\left( u^{2} \right) + \cos^{2}\left( u^{2} \right) \right\rbrack = a^{2}$$


$$g = \left| g_{\text{ij}} \right| = \left| \begin{matrix} 1 & 0 \\ 0 & a^{2} \\ \end{matrix} \right| = a^{2}$$


$$g^{\text{ij}} = {\overrightarrow{r}}^{i} \bullet {\overrightarrow{r}}^{j}$$


$$g^{\text{ij}} = \frac{G^{\text{ij}}}{g}$$

Gijdopełnienie algebraiczne elementu gij


$$g^{11} = \frac{G^{11}}{g} = \frac{a^{2}}{a^{2}} = 1$$


$$g^{12} = g^{21} = \frac{G^{12}}{g} = \frac{G^{21}}{g} = \frac{0}{a^{2}} = 0$$


$$g^{22} = \frac{G^{22}}{g} = \frac{1}{a^{2}}$$


$$g^{\text{ij}} = \left| \begin{matrix} 1 & 0 \\ 0 & \frac{1}{a^{2}} \\ \end{matrix} \right| = \frac{1}{a^{2}}$$


$$\sqrt{g} \bullet \overrightarrow{m} = \overrightarrow{r_{1}}\text{\ x\ }\overrightarrow{r_{2}} = \left| \begin{matrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 0 & 0 & 1 \\ \operatorname{-asin}\left( u^{2} \right) & \text{acos}\left( u^{2} \right) & 0 \\ \end{matrix} \right| = \operatorname{-asin}u^{2}\overrightarrow{j} - acos\text{\ u}^{2}\overrightarrow{i}$$


$$\sqrt{g} = a$$


$$\overrightarrow{m} = \operatorname{-sin}u^{2}\overrightarrow{j} - cos\text{\ u}^{2}\overrightarrow{i}$$


$$\sqrt{a^{2}} \bullet \overrightarrow{m} = \overrightarrow{r_{1}}\text{\ x\ }\overrightarrow{r_{2}} = \operatorname{-asin}u^{2}\overrightarrow{j} - acos\text{\ u}^{2}\overrightarrow{i}$$


$$\overrightarrow{m_{i}} = \frac{\partial\overrightarrow{m}}{\partial u^{i}}$$


$$\overrightarrow{m_{1}} = \frac{\partial\overrightarrow{m}}{\partial u^{1}} = 0$$


$$\overrightarrow{m_{2}} = \frac{\partial\overrightarrow{m}}{\partial u^{2}} = \sin u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j}$$


$$b_{\text{ij}} = \overrightarrow{r_{i}} \bullet \overrightarrow{m_{j}}$$


$$b_{11} = \overrightarrow{r_{1}} \bullet \overrightarrow{m_{1}} = \overrightarrow{k} \bullet 0 = 0$$


$$b_{12} = \overrightarrow{r_{1}} \bullet \overrightarrow{m_{2}} = \overrightarrow{k} \bullet (\sin u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j}) = 0$$


$$b_{21} = \overrightarrow{r_{2}} \bullet \overrightarrow{m_{1}} = \lbrack a\left\lbrack \operatorname{-sin}\left( u^{2} \right)\overrightarrow{i} + cos\left( u^{2} \right)\overrightarrow{j} \right\rbrack\rbrack \bullet 0 = 0$$


$$b_{22} = \overrightarrow{r_{2}} \bullet \overrightarrow{m_{2}} = a\left\lbrack \operatorname{-sin}\left( u^{2} \right)\overrightarrow{i} + cos\left( u^{2} \right)\overrightarrow{j} \right\rbrack\rbrack \bullet (\sin u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j}) = a$$


$$b = \left| b_{\text{ij}} \right| = \left| \begin{matrix} 0 & 0 \\ 0 & a \\ \end{matrix} \right| = 0$$


bkl = bijgikgjl = b11g1kg1l + b12g1kg2l + b21g2kg1l + b22g2kg2l


b11 = b11g11g11 + b12g11g21 + b21g21g11 + b22g21g21 = 0


b12 = b11g11g12 + b12g11g22 + b21g21g12 + b22g21g22 = 0


b21 = b11g12g11 + b12g12g21 + b21g22g11 + b22g22g21 = 0


$$b^{22} = b_{11}g^{12}g^{12} + b_{12}g^{12}g^{22} + b_{21}g^{22}g^{12} + b_{22}g^{22}g^{22} = a \bullet \frac{1}{a^{2}} \bullet \frac{1}{a^{2}} = \frac{1}{a^{3}}$$


bjk = bij • gik = b1j • g1k + b2j • g2k


b11 = b11 • g11 + b21 • g21 = 0


b12 = b11 • g12 + b21 • g22 = 0


b21 = b12 • g11 + b22 • g21 = 0


$$b_{2}^{2} = b_{12} \bullet g^{12} + b_{22} \bullet g^{22} = a \bullet \frac{1}{a^{2}} = \frac{1}{a}$$


$$c_{\text{ij}} = \overrightarrow{m_{i}} \bullet \overrightarrow{m_{j}}$$


$$c_{11} = \overrightarrow{m_{1}} \bullet \overrightarrow{m_{1}} = 0 \bullet 0 = 0$$


$$c_{12} = \overrightarrow{m_{1}} \bullet \overrightarrow{m_{2}} = 0 \bullet \operatorname{(sin}u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j}) = 0$$


$$c_{21} = \overrightarrow{m_{2}} \bullet \overrightarrow{m_{1}} = \operatorname{(sin}u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j}) \bullet 0 = 0$$


$$c_{22} = \overrightarrow{m_{2}} \bullet \overrightarrow{m_{2}} = (\sin u^{2}\overrightarrow{i} - \cos u^{2}\overrightarrow{j})^{2} = 1$$


$$K = \frac{b}{g} = \frac{0}{a^{2}} = 0$$


$$H = \frac{1}{2}g^{\text{ij}} \bullet b_{\text{ij}}$$


$$H = \frac{1}{2}\left( b_{11} \bullet g^{11} + b_{12} \bullet g^{12} + b_{21} \bullet g^{21} + b_{22} \bullet g^{22} \right) = \frac{1}{2} \bullet \frac{1}{a^{2}} \bullet a = \frac{1}{2a}$$


$$\Gamma_{\text{ij}}^{k} = \frac{1}{2}g^{\text{km}}\left\lbrack g_{jm,k} + g_{mi,j} = g_{ij,m} \right\rbrack$$


$$\Gamma_{\text{ij}}^{k} = \frac{1}{2}g^{k1}\left\lbrack g_{j1,k} + g_{1i,j} - g_{ij,1} \right\rbrack + \frac{1}{2}g^{k2}\left\lbrack g_{j2,k} + g_{2i,j} - g_{ij,2} \right\rbrack$$

Ponieważ wszystkie współczynniki pierwszej formy różniczkowej są stałymi zatem ich pochodne są równe 0. Stąd symbole Christoffela drugiego rodzaju są równe 0.


Γijk = 0

  1. Po podstawieniu znanych wartości otrzymano:

Dane:


a = R = 32, 4 m


g11 = 1


g12 = g21 = 0


g22 = a2 = 32, 42 = 1049, 76 m


g = a2 = R2 = 32, 42 = 1049, 76 m2


g11 = 1


g12 = g21 = 0


$$g^{22} = \frac{1}{a^{2}} = \frac{1}{{32,4}^{2}} = 9,53 \bullet 10^{- 4}$$


b11 = 0


b12 = b21 = 0


b22 = a = R = 32, 4 m


b = |bij| = 0


b11 = 0


b12 = b21 = 0


$$b^{22} = \frac{1}{a^{3}} = \frac{1}{{32,4}^{3}} = 2,94 \bullet 10^{- 5}$$


b11 = 0


b12 = b21 = 0


$$b_{2}^{2} = \frac{1}{a} = \frac{1}{32,4} = 0,0309$$


c11 = 0


c12 = c21 = 0


c22 = 1


K = 0


$$H = \frac{1}{2a} = \frac{1}{2 \bullet 32,4} = 0,015$$


Γijk = 0

  1. Równania równowagi


 Nij|i − Qibij + Pj = 0


Nijbij +  Qj|j + P3 = 0


 Mij|i − Qj = 0


 N11|1 +  N21|2 − Q1b11 − Q2b21 + P1 = 0


 N12|1 +  N22|2 − Q1b12 − Q2b22 + P2 = 0


N11b11 + N12b12 + N21b21 + N22b22 + P2 = 0


 M11|1 +  M21|2 − Q1 = 0


 M12|1 +  M22|2 − Q2 = 0


 Nij|k = Nij,k + Γkmi • Nmj + Γkmj • Nim


 Qj|k = Qj,k + Γkij • Qi


 Mij|k = Mij,k + Γkmi • Mmj + Γkmj • Mim


 Nij|k = Nij,k


 Qj|k = Qj,k


 Mij|k = Mij,k

  1. Stan błonowy

    1. Równania równowagi


 Nij|k + Pj = 0


Nijbij + P3 = 0

$\left. \ {\overset{\overline{}}{N}}^{11} \right|_{1} + \left. \ {\overset{\overline{}}{N}}^{21} \right|_{2} + P^{1} = 0$ (1)

$\left. \ {\overset{\overline{}}{N}}^{12} \right|_{1} + \left. \ {\overset{\overline{}}{N}}^{22} \right|_{2} + P^{2} = 0$ (2)

${\overset{\overline{}}{N}}^{11}b_{11} + N^{12}b_{12} + N^{21}b_{21} + N^{22}b_{22} + P^{3} = 0$ (3)

${{\overset{\overline{}}{N}}^{11}}_{,1} + {{\overset{\overline{}}{N}}^{21}}_{,2} + P^{1} = 0$ (1)

${{\overset{\overline{}}{N}}^{12}}_{,1} + {{\overset{\overline{}}{N}}^{22}}_{,2} + P^{2} = 0$ (2)

N22a + P3 = 0 (3)


$$\overrightarrow{P} = P^{i}{\overrightarrow{r}}_{i} + P^{3}\overrightarrow{m}$$


$$\overrightarrow{P} = P^{1}{\overrightarrow{r}}_{1} + P^{2}{\overrightarrow{r}}_{2} + P^{3}\overrightarrow{m}$$


q = 2hγz


P1 = −2hγz


P2 = 0


P3 = 0

(3) ${\overset{\overline{}}{N}}^{22} = \frac{1}{a}P^{3} = \frac{1}{a}\gamma_{c}(L - U^{1})$

(2) ${\overset{\overline{}}{N}}^{12} = \int_{}^{}{( - {\overset{\overline{}}{N}}_{12}^{22} - P^{2}})du^{1} = \int_{}^{}0du^{1} = 0$


$${\overset{\overline{}}{N}}^{12}\left( U^{'} = L \right) = 0 \rightarrow C_{1} = 0$$


$${\overset{\overline{}}{N}}^{12} = 0$$

(1) ${\overset{\overline{}}{N}}^{11} = \int_{}^{}{( - {\overset{\overline{}}{N}}_{12}^{21} - P^{1}})du^{1} = \int_{}^{}{2h\gamma_{z}}du^{1} = 2h\lambda_{z}U^{1} + C_{1}$


$${\overset{\overline{}}{N}}^{11}\left( U^{1} = L \right) = 0$$


2hγz = L + C2 = 0 → C2 = −2hγzL


$${\overset{\overline{}}{N}}^{11} = 2h\gamma_{z}(U^{1} - L)$$

  1. Przemieszczenia i odkształcenia

w przemieszczenia

γ odkształcenia

  1. Związek fizyczny


$$\gamma^{\text{ij}} = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{\text{ij}} - \nu\overset{\overline{}}{N}g^{\text{ij}} \right\rbrack$$

gdzie:


$$\overset{\overline{}}{N} = g^{\text{ij}}{\overset{\overline{}}{N}}^{\text{ij}}$$


$$\overset{\overline{}}{N} = {\overset{\overline{}}{N}}^{11} + R^{2}{\overset{\overline{}}{N}}^{22}$$


$$\gamma^{11} = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{11} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22})g^{11} \right\rbrack = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{11} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22}) \bullet 1 \right\rbrack = \frac{1}{2Eh}\left\lbrack {\overset{\overline{}}{N}}^{11} - \nu a^{2}{\overset{\overline{}}{N}}^{22} \right\rbrack$$


$$\gamma^{12} = \gamma^{21} = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{12} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22})g^{12} \right\rbrack = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{12} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22}) \bullet 0 \right\rbrack = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{12} \right\rbrack$$


$$\gamma^{22} = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{22} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22})g^{22} \right\rbrack = \frac{1}{2Eh}\left\lbrack \left( 1 + \nu \right){\overset{\overline{}}{N}}^{22} - \nu({\overset{\overline{}}{N}}^{11} + a^{2}{\overset{\overline{}}{N}}^{22}) \bullet \frac{1}{a^{2}} \right\rbrack = \frac{1}{2Eh}\left\lbrack {\overset{\overline{}}{N}}^{22} - \nu\frac{1}{a^{2}}{\overset{\overline{}}{N}}^{11} \right\rbrack$$


γkl = γijgikgjl = γ11g1kg1l + γ12g1kg2l + γ21g2kg1l + γ22g2kg2l


γ11 = γ11g11g11 + γ12g11g21 + γ21g21g11 + γ22g21g21


γ12 = γ11g11g12 + γ12g11g22 + γ21g21g12 + γ22g21g22


γ21 = γ11g12g11 + γ12g12g21 + γ21g22g11 + γ22g22g21


γ22 = γ11g12g12 + γ12g12g22 + γ21g22g12 + γ22g22g22


γ11 = γ11


γ12 = γ12 • a2 = γ12 • R2


γ21 = γ21 • a2 = γ21 • R2


γ22 = γ22 • a2 • a2 = γ22 • R4

  1. Związek geometryczny


$$2\gamma_{y} = w\frac{k}{i}g_{\text{jk}} + w\frac{k}{j}g_{\text{ik}} + 2b_{\text{ij}}w^{3}$$


$$2\gamma_{11} = w\frac{1}{1}g_{11} + w\frac{2}{1}g_{12} + w\frac{1}{1}g_{11} + w\frac{2}{1}g_{12} + 2b_{11}w^{3}$$


$$2\gamma_{12} = w\frac{1}{1}g_{21} + w\frac{2}{1}g_{22} + w\frac{1}{2}g_{11} + w\frac{2}{2}g_{12} + 2b_{12}w^{3}$$


$$2\gamma_{22} = w\frac{1}{2}g_{21} + w\frac{2}{2}g_{22} + w\frac{1}{1}g_{21} + w\frac{2}{2}g_{22} + 2b_{22}w^{3}$$

Podstawiając znane wartości gij i bij otrzymano:


γ11 = wI11


$$\gamma_{12} = \frac{1}{2}\left( a^{2}w_{I1}^{2} + w_{I2}^{1} \right)$$


γ22 = a2wI22 − aw3

Podstawiając za składowe tensora odkształcenia zależności z punktu 2.3 otrzymano:


$$w_{I1}^{1} = \frac{1}{2Eh}\left( {\overset{\overline{}}{N}}^{11} - \nu R^{2}{\overset{\overline{}}{N}}^{22} \right)$$


$$a^{2}w_{I1}^{2} + w_{I2}^{1} = 2a^{2}\frac{1}{2Eh}\left( 1 + \nu \right){\overset{\overline{}}{N}}^{12}$$


$$a^{2}w_{I2}^{2} - aw^{3} = a^{4}\frac{1}{2Eh}\left( {\overset{\overline{}}{N}}^{22} - \nu\frac{1}{a^{2}}{\overset{\overline{}}{N}}^{11} \right)$$

Wyznaczenie składowych wektora przemieszczenia z równania:


$$w^{'} = \int_{}^{}{\frac{1}{2Eh}\left\lbrack 2h\gamma_{z}\left( u^{'} - L \right) - \nu a^{2}\frac{1}{a}\gamma_{c}\left( u^{'} - L \right)du' \right\rbrack}$$


$$w^{1} = \int_{}^{}{\frac{1}{2Eh}\left\lbrack 2h\gamma_{z}\left( u^{1} - L \right) - \nu a^{2}\frac{1}{a}\gamma_{c}\left( u^{1} - L \right)du^{1} \right\rbrack} = \frac{1}{2Eh}\left\lbrack 2h\gamma_{z}\frac{\left( u^{1} - L \right)^{2}}{2} + \nu a\gamma_{c}\frac{\left( u^{1} - L \right)^{2}}{2} + S_{1} \right\rbrack$$

Warunek brzegowy


w1(u1=0) = 0


$$\frac{1}{2Eh}\left\lbrack 2h\gamma_{z} - \frac{L^{2}}{2} + \nu a\gamma_{c}\frac{L^{2}}{2} + S_{1} \right\rbrack = 0$$


$$S_{1} = \frac{L^{2}}{2}\left( 2h\gamma_{z} + \text{νa}\gamma_{c} \right)$$


$$w^{1} = \frac{1}{2Eh}\left\lbrack 2h\gamma_{z}\frac{\left( u^{1} - L \right)^{2}}{2} + \nu a\gamma_{c}\frac{\left( u^{1} - L \right)^{2}}{2} - \frac{L^{2}}{2}\left( 2h\gamma_{z} + \text{νa}\gamma_{c} \right) \right\rbrack$$


$$w^{1} = \frac{1}{2Eh}\left\lbrack \left( 2h\gamma_{z} + \nu a\gamma_{c} \right)\frac{\left( u^{1} \right)^{2}}{2} - Lu^{1} \right\rbrack$$


$${\overset{\overline{}}{N}}^{12} = 0 \land w_{I2}^{1} = 0\ zatem\ w^{2} = 0$$


$$w_{I2}^{2} = Rw^{3} = a^{4}\frac{1}{2Eh}\left( {\overset{\overline{}}{N}}^{22} - \nu\frac{1}{R^{2}}{\overset{\overline{}}{N}}^{11} \right)$$


$$w^{3} = R^{3}\frac{1}{2Eh}\left\lbrack \frac{1}{R}\gamma_{c}\left( L - u^{1} \right) - \nu\frac{1}{R}2h\gamma_{z}\left( u^{1} - L \right) \right\rbrack$$


$$w^{3} = R^{3}\frac{1}{2Eh}\left\lbrack \frac{1}{R}\gamma_{c}\left( u^{1} - L \right) + \nu\frac{1}{R^{2}}2h\gamma_{z}\left( u^{1} - L \right) \right\rbrack$$


$$w^{3} = \frac{R^{2}\gamma_{c} + \nu R2h\gamma_{z}}{2Eh}\left( u^{1} - L \right)$$

  1. Obliczenie wartości sił wewnetrznych

Dane:


2h = (0, 014; 0, 012; 0, 01; 0, 01; 0, 01; 0, 008; 0, 008) m


γz = 25 kN/m3


L = 30, 322 m


$${\overset{\overline{}}{N}}^{11} = 2h\gamma_{z}\left( u^{1} - L \right)$$

Obliczenia wykonanoza pomocą programu Excel.


$$u^{1} = 0 \longmapsto {\overset{\overline{}}{N}}^{11} = 0,014 \bullet 25\left( 0 - 30,322 \right) = - 10,613\ kN/m$$


$$u^{1} = 4,332 \longmapsto {\overset{\overline{}}{N}}^{11} = - 9,097\ kN/m$$


$$u^{1} = 8,664 \longmapsto {\overset{\overline{}}{N}}^{11} = - 6,497\ kN/m$$


$$u^{1} = 12,996 \longmapsto {\overset{\overline{}}{N}}^{11} = - 4,332\ kN/m$$


$$u^{1} = 17,328 \longmapsto {\overset{\overline{}}{N}}^{11} = - 3,249\ kN/m$$


$$u^{1} = 21,660 \longmapsto {\overset{\overline{}}{N}}^{11} = - 2,166\ kN/m$$


$$u^{1} = 25,992 \longmapsto {\overset{\overline{}}{N}}^{11} = - 0,866\ kN/m$$


$$u^{1} = 30,322 \longmapsto {\overset{\overline{}}{N}}^{11} = 0\ kN/m$$


$${\overset{\overline{}}{N}}^{12} = 0$$


$${\overset{\overline{}}{N}}^{22} = \frac{1}{R}\gamma_{c}\left( L - u^{1} \right)$$


R = 32, 4 m


γc = 13, 0 kN/m3


$$u^{1} = 0 \longmapsto {\overset{\overline{}}{N}}^{22} = \frac{1}{32,4} \bullet 13,0 \bullet \left( 30,322 - 0 \right) = 12,166\ kN/m$$


$$u^{1} = 4,332 \longmapsto {\overset{\overline{}}{N}}^{22} = 10,428\ kN/m$$


$$u^{1} = 8,664 \longmapsto {\overset{\overline{}}{N}}^{22} = 8,690\ kN/m$$


$$u^{1} = 12,996 \longmapsto {\overset{\overline{}}{N}}^{22} = 6,952\ kN/m$$


$$u^{1} = 17,328 \longmapsto {\overset{\overline{}}{N}}^{22} = 5,214\ kN/m$$


$$u^{1} = 21,660 \longmapsto {\overset{\overline{}}{N}}^{22} = 3,475\ kN/m$$


$$u^{1} = 25,992 \longmapsto {\overset{\overline{}}{N}}^{22} = 1,737\ kN/m$$


$$u^{1} = 30,322 \longmapsto {\overset{\overline{}}{N}}^{22} = 0\ kN/m$$

  1. Obliczanie wartości przemieszczeń


2h = (0, 014; 0, 012; 0, 01; 0, 01; 0, 01; 0, 008; 0, 008) m


γz = 25 kN/m3


L = 30, 322 m


R = 32, 4 m


γc = 13, 0 kN/m3


ν = 0, 2


$$\frac{C37}{45} \rightarrow E = 34\ GPa = 34 \bullet 10^{6}\ kN/m^{2}$$


$${\overset{\overline{}}{w}}^{1} = \frac{1}{2Eh}\left\lbrack \left( 2h\gamma_{z} + \nu R\gamma_{c} \right)\frac{\left( u^{1} \right)^{2}}{2} - Lu^{1} \right\rbrack$$


$$u^{1} = 0 \longmapsto {\overset{\overline{}}{w}}^{1} = \frac{1}{0,014 \bullet 34 \bullet 10^{6}}\left\lbrack \left( 0,014 \bullet 25 + 0,2 \bullet 32,4 \bullet 13 \right)\frac{0^{2}}{2} - 30,322 \bullet 0 \right\rbrack = 0$$


$$u^{1} = 4,332 \longmapsto {\overset{\overline{}}{w}}^{1} = 1,39 \bullet 10^{- 3}\text{\ m}$$


$$u^{1} = 8,664 \longmapsto {\overset{\overline{}}{w}}^{1} = 7,13 \bullet 10^{- 3}\ m$$


$$u^{1} = 12,996 \longmapsto {\overset{\overline{}}{w}}^{1} = 1,98 \bullet 10^{- 2}\ m$$


$$u^{1} = 17,328 \longmapsto {\overset{\overline{}}{w}}^{1} = 3,58 \bullet 10^{- 2}\ m$$


$$u^{1} = 21,660 \longmapsto {\overset{\overline{}}{w}}^{1} = 5,64 \bullet 10^{- 2}\ m$$


$$u^{1} = 25,992 \longmapsto {\overset{\overline{}}{w}}^{1} = 1,02 \bullet 10^{- 1}\ m$$


$$u^{1} = 30,322 \longmapsto {\overset{\overline{}}{w}}^{1} = 1,39 \bullet 10^{- 1}\ m$$

${\overset{\overline{}}{w}}^{2} = 0 -$ składowa styczna do obwodu


$${\overset{\overline{}}{w}}^{3} = \frac{R^{2}\gamma_{c} + \nu R2h\gamma_{z}}{2Eh}\left( u^{1} - L \right)$$


$$u^{1} = 0 \longmapsto {\overset{\overline{}}{w}}^{3} = \frac{{32,4}^{2} \bullet 13 + 0,2 \bullet 32,4 \bullet 0,014 \bullet 25}{0,014 \bullet 34 \bullet 10^{6}}\left( 0 - 30,322 \right) = - 0,869\ m$$


$$u^{1} = 4,332 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,745\ m$$


$$u^{1} = 8,664 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,725\ m$$


$$u^{1} = 12,996 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,696\ m$$


$$u^{1} = 17,328 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,522\ m$$


$$u^{1} = 21,660 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,348\ m$$


$$u^{1} = 25,992 \longmapsto {\overset{\overline{}}{w}}^{3} = - 0,217\ m$$


$$u^{1} = 30,322 \longmapsto {\overset{\overline{}}{w}}^{3} = 0\ m$$

  1. Stan zgięciowy

    • Siły przekrojowe


$${\hat{N}}^{\text{ij}} = \left\lbrack d^{y}C_{\text{kl}}^{'} - b^{y}C_{i} \right\rbrack \bullet S^{\text{kl}}$$


$${\hat{Q}}^{j} = \frac{\varepsilon}{\omega} \bullet g \bullet g^{\text{ij}} \bullet \left\lbrack n_{i} - C_{12}^{1} + m_{i} \bullet C_{m} \right\rbrack \bullet S^{\text{kl}}$$


$${\hat{M}}^{\text{ij}} = - \frac{1}{\omega^{2}}\left( 1 - \nu \right) \bullet \alpha^{\text{ij}} \bullet C_{\text{kl}}^{2} + \left\lbrack \left( 1 - \gamma \right) \bullet \beta^{\text{ij}} - g\varepsilon g^{\text{ij}}C_{\text{kl}}^{1} \right\rbrack \bullet S^{\text{kl}}$$


$${\hat{w}}_{s} = \frac{g}{2Eh} \bullet C_{\text{kl}}^{2} \bullet S^{d}$$


$${\hat{w}}^{d} = \frac{1}{2Eh\varepsilon} \bullet \left\lbrack \frac{2H}{\varepsilon} - \left( 1 - \nu \right) \right\rbrack \bullet \hat{Q}$$

gdzie:


$$\omega^{4} = \frac{3\left( 1 - \nu^{2} \right)}{h^{2}}$$


$$\varepsilon = 1 \pm \sqrt{H^{2} - k}$$


$$\alpha^{\text{ij}} = \left\{ \begin{matrix} \alpha^{11} = \left( n_{2} \right)^{2} - \left( m_{2} \right)^{2} \\ \alpha^{12} = n_{1}n_{2} + m_{1}m_{2} \\ \alpha^{13} = \left( n_{1} \right)^{2} - \left( m_{1} \right)^{2} \\ \end{matrix} \right.\ $$

$\beta^{\text{ij}} = \left\{ \begin{matrix} \beta^{11} = 2n_{2}m_{2} \\ \beta^{12} = - \left( n_{1}m_{2} + n_{2}m_{1} \right) \\ \beta^{13} = {2n}_{1}m_{1} \\ \end{matrix} \right.\ $


$$S^{\text{kl}} = \left\{ \begin{matrix} \begin{matrix} S^{11} = e^{\omega m_{1}u^{i}} \bullet \sin{\omega n_{1}u^{1} \bullet \sin{\omega n_{2}}}u^{2} \\ S^{12} = e^{\omega m_{1}u^{i}} \bullet \sin{\omega n_{1}u^{1} \bullet \cos{\omega n_{2}u^{2}}} \\ S^{21} = e^{\omega m_{1}u^{i}} \bullet \operatorname{cos\omega}{\bullet \sin{\omega n_{2}}}u^{2} \\ \end{matrix} \\ S^{22} = e^{\omega m_{1}u^{i}} \bullet \cos{\omega n_{1}u^{1}} \bullet \cos{\omega n_{2}u^{2}} \\ \end{matrix} \right.\ $$


m2 = n2 = 0


$$m_{1} = n_{1} = - \sqrt{\frac{1}{2a}}$$


$$\varepsilon = H \pm \sqrt{H^{2} - k}\ ;\ \ \ \ \ \ \ \ \ \ \ H = \frac{1}{2a}$$


$$\varepsilon = 0\ \ \ \vee \ \ \ \varepsilon = \frac{1}{a}$$

po podstawieniu znanych wartości:


$$m_{1} = n_{1} = \varepsilon_{k} \bullet \sqrt{\frac{\text{εg}}{2gz}}$$

otrzymano:


$$\alpha^{\text{ij}} = \left\{ \begin{matrix} \alpha^{11} = 0 \\ \alpha^{12} = 0 \\ \alpha^{13} = 0 \\ \end{matrix} \right.\ $$


$$\beta^{\text{ij}} = \left\{ \begin{matrix} \beta^{11} = 0 \\ \beta^{12} = 0 \\ \beta^{13} = {2n}_{1}n_{2} = \frac{1}{a} \\ \end{matrix} \right.\ $$


$$S^{\text{kl}} = \left\{ \begin{matrix} \begin{matrix} S^{11} = 0 \\ S^{12} = e^{\omega m_{1}u^{i}} \bullet \sin{\omega n_{1}u^{1}} \\ S^{21} = 0 \\ \end{matrix} \\ S^{22} = e^{\omega m_{1}u^{i}} \bullet \cos{\omega n_{1}u^{1}} \\ \end{matrix} \right.\ $$


$${\hat{N}}^{11} = {\hat{N}}^{12} = {\hat{N}}^{21} = C$$


$${\hat{N}}^{22} = - \beta^{22} \bullet \left\lbrack C_{12}^{2} \bullet S^{12} + C_{22}^{2} \bullet S^{22} \right\rbrack$$


$${\hat{Q}}^{1} = \frac{\varepsilon}{\omega} \bullet g \bullet g^{1} \bullet n_{1}\left\lbrack \left( C_{12}^{1} + C_{12}^{2} \right) \bullet S^{12} + \left( C_{22}^{1} + C_{22}^{2} \right) \bullet S^{22} \right\rbrack$$


$${\hat{Q}}^{2} = 0$$


$${\hat{M}}^{11} = - \frac{\text{gε}g^{11}}{\omega^{2}} + C_{12}^{1} \bullet S^{12} + C_{22}^{1} \bullet S^{22}$$


$${\hat{M}}^{12} = {\hat{M}}^{21} = 0$$


$${\hat{M}}^{22} = - \frac{1}{\omega^{2}}\left\lbrack \left( 1 - \nu \right) \bullet \beta^{22} - g\varepsilon g^{22} \right\rbrack \bullet \left\lbrack C_{12}^{1} \bullet S^{12} + C_{22}^{1} \bullet S^{22} \right\rbrack$$


$${\hat{w}}^{1} = \frac{1}{2Eh\varepsilon} \bullet \left\lbrack \frac{2H}{\varepsilon} - \left( 1 - \nu \right) \right\rbrack \bullet {\hat{Q}}^{1}$$


$${\hat{w}}^{2} = 0$$


$${\hat{w}}^{3} = \frac{g}{2Eh} \bullet \left\lbrack C_{12}^{2} \bullet S^{12} + C_{22}^{2} \bullet S^{22} \right\rbrack$$

  1. Warunki brzegowe (dla dolnego brzegu u1 = 0

1) $w^{3} = {\overset{\overline{}}{w}}^{3} + {\hat{w}}^{3} = 0$


$$d^{1} = {\overset{\overline{}}{d}}^{1} + {\hat{d}}^{1} = 0$$

2)$\ w_{11}^{3} = {\overset{\overline{}}{w}}_{11}^{3} + {\hat{w}}_{11}^{3} = 0$


$$d^{1} = - g^{4}\left( w^{k}b_{\text{kl}} + w^{\frac{3}{1}} \right)$$


$${\overset{\overline{}}{w}}^{3} = \frac{u^{'} - L}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


$${\overset{\overline{}}{w}}_{11}^{3} = - \frac{1}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


$${\overset{\overline{}}{w}}^{3}\left( u^{'} = 0 \right) = - \frac{L}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


$${\overset{\overline{}}{w}}_{11}^{3}(u^{'} = 0) = \frac{1}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


$${\hat{w}}^{3} = \frac{g}{2Eh} \bullet \left\lbrack C_{12}^{2} \bullet S^{12} + C_{22}^{2} \bullet S^{22} \right\rbrack$$


$${\hat{w}}_{11}^{3} = \frac{g}{2Eh} \bullet \left\lbrack C_{12}^{2} \bullet S_{11}^{12} + C_{22}^{2} \bullet S_{11}^{22} \right\rbrack$$


$$\left( \frac{S_{11}^{12} = \omega_{m},e^{\omega_{m},u^{'}} \bullet \sin{\omega_{n},u^{'}} + \omega_{n},e^{\omega_{m},u^{'}} \bullet \cos{\omega_{n},u^{'}}}{\begin{matrix} S_{11}^{22} = \omega_{m},e^{\omega_{m}u^{'}} \bullet \cos{\omega_{n},u^{'}} + \omega_{n},e^{\omega_{m},u^{'}} \bullet \sin{\omega_{n},u^{'}} \\ S^{12}\left( u^{'} = 0 \right) = 0;\ S^{22}\left( u^{'} = 0 \right) = e^{\omega_{m},u^{'}} \bullet \cos{\omega_{n},u^{'}} = 1 \\ S_{11}^{12}\left( u^{'} = 0 \right) = \omega_{n};S_{11}^{22}\left( u^{'} = 0 \right) = \omega_{m} \\ \end{matrix}} \right)$$


$${\hat{w}}^{3}\left( u^{'} = 0 \right) = \frac{g}{2Eh} \bullet C_{22}^{2}$$


$${\hat{w}}_{11}^{3}\left( u^{'} = 0 \right) = \frac{g}{2Eh} \bullet \omega_{n} \bullet \left\lbrack C_{12}^{2} + C_{22}^{2} \right\rbrack$$

Podstawiając do warunków brzegowych otrzymano:


$$w^{3} = - \frac{L}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack + \frac{g}{2Eh} \bullet C_{22}^{2} = 0$$


$$w_{11}^{3} = \frac{1}{2Eh}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack + \frac{g}{2Eh} \bullet \omega_{n} \bullet \left\lbrack C_{12}^{2} + C_{22}^{2} \right\rbrack = 0$$


$$C_{22}^{2} = \frac{L}{g}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


$$C_{12}^{2} = - \left( \frac{1}{\omega_{n}} - \frac{L}{g} \right) \bullet \left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$


w3 = 0


w113 = 0


$$M_{i}^{\text{ij}} - {\hat{Q}}^{j} = 0$$


$$M_{1}^{11} + \hat{M} - {\hat{Q}}^{1} = 0$$


$$M_{1}^{11} = {\hat{Q}}^{1}$$


S1112 = (S22+S12) • ωn


S1112 = (S22S12) • ωn


$${\hat{M}}_{11}^{11} = \frac{\varepsilon}{\omega} \bullet gg^{11} \bullet n_{1} \bullet \left\lbrack \left( C_{12}^{1} - C_{22}^{1} \right)S^{12} + \left( C_{12}^{1} - C_{22}^{1} \right)S^{22} \right\rbrack$$


$${\hat{Q}}^{1} = \frac{\varepsilon}{\omega} \bullet gg^{11} \bullet n_{1} \bullet \left\lbrack \left( C_{12}^{1} + C_{12}^{2} \right)S^{12} + \left( C_{22}^{1} + C_{22}^{2} \right)S^{22} \right\rbrack$$


$${\overset{\overline{}}{M}}_{11}^{11} = {\hat{Q}}^{1}$$


C221 = −C122


C121 = C222


$$C_{12}^{2} = - \left( \frac{1}{\omega_{n} \bullet g} - \frac{L}{g} \right) \bullet \left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack$$

    1. Obliczenie wartości S


S22 = eωm, ucosωn, u


S12 = eωm, usinωn, u

gdzie:


$$\omega^{4} = \frac{3\left( 1 - \nu^{2} \right)}{h^{2}}$$


h = (0, 007; 0, 006; 0, 005; 0, 005; 0, 005; 0, 004; 0, 004) m


R = 32, 4 m


υ = 0, 2


$$\omega^{4} = \frac{3\left( 1 - {0,2}^{2} \right)}{{0,007}^{2}} = 58775,5 \rightarrow \ \omega = 15,57$$


$$m_{1} = n_{1} = - \sqrt{\frac{1}{2R}} = - \sqrt{\frac{1}{2 \bullet 32,4}} = - 0,124$$


u = 0 → S22 = 1


S12 = 0


S11 = 0


u1 = 4, 332 ↦ S22 = e15, 57 • (−0,124) • 4, 332 • cos(15,57•(−0,124)•4,332)= − 1, 14 • 10−4

S12 = e15, 57 • (−0,124) • 4, 332 • sin(15,57•(−0,124)•4,332)= − 2, 04 • 10−4


u1 = 8, 664 ↦ S22 = 1, 01 • 10−8

S12 = 1, 002 • 10−8


u1 = 12, 996 ↦ S22 = −1, 99 • 10−14

S12 = 1, 26 • 10−13


u1 = 17, 328 ↦ S22 = −1, 99 • 10−18

S12 = −6, 12 • 10−18


u1 = 21, 660 ↦ S22 = 2, 29 • 10−22

S12 = 2, 29 • 10−22


u1 = 25, 992 ↦ S22 = −1, 35 • 10−29

S12 = 5, 92 • 10−30


u1 = 30, 322 ↦ S22 = −1, 07 • 10−34

S12 = −2, 06 • 10−34

    1. Obliczenie wartości S


$${\hat{N}}^{22} = - \beta^{22} \bullet \left\lbrack C_{12}^{2} \bullet S^{12} + C_{22}^{2} \bullet S^{22} \right\rbrack$$

Dane:


$$\beta^{22} = \frac{1}{R} = \frac{1}{32,4} = 0,031$$


$$C_{12}^{2} = - \left( \frac{1}{\omega_{n} \bullet n_{1} \bullet g} \pm \frac{L}{g} \right) \bullet \left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack = - \left( \frac{1}{15,57 \bullet \left( - 0,124 \right) \bullet 1049,76} \pm \frac{30,322}{1049,76} \right) \bullet \left( 0,014 \bullet 32,4 \bullet 0,2 \bullet 25 + {32,4}^{2} \bullet 13 \right) = - 387,5/400,99$$


$$C_{22}^{2} = \frac{L}{g}\left\lbrack 2ha\nu\gamma_{z} + a^{2}\gamma_{c} \right\rbrack = \frac{30,322}{1049,76}\left\lbrack 0,014 \bullet 32,4 \bullet 0,2 \bullet 25 + {32,4}^{2} \bullet 13 \right\rbrack = 394,25$$


$${\hat{N}}^{22} = - 0,031 \bullet \left\lbrack 400,99 \bullet S^{12} + 394,25 \bullet S^{22} \right\rbrack$$


$$u^{1} = 0 \longmapsto {\hat{N}}^{22} = - 0,031 \bullet \left\lbrack 400,99 \bullet 0 + 394,25 \bullet 1 \right\rbrack = 394,25$$


$$u^{1} = 4,332 \longmapsto {\hat{N}}^{22} = - 0,031 \bullet \left\lbrack 400,99 \bullet \left( - 2,04 \bullet 10^{- 4} \right) + 394,25 \bullet \left( - 1,14 \bullet 10^{- 4} \right) \right\rbrack = - 0,04$$


$$u^{1} = 8,664 \longmapsto {\hat{N}}^{22} = 3,86 \bullet 10^{- 6}$$


$$u^{1} = 12,996 \longmapsto {\hat{N}}^{22} = - 9,40 \bullet 10^{- 12}$$


$$u^{1} = 17,328 \longmapsto {\hat{N}}^{22} = - 7,10 \bullet 10^{- 16}$$


$$u^{1} = 21,660 \longmapsto {\hat{N}}^{22} = 8,76 \bullet 10^{- 20}$$


$$u^{1} = 25,992 \longmapsto {\hat{N}}^{22} = - 5,39 \bullet 10^{- 27}$$


$$u^{1} = 30,322 \longmapsto {\hat{N}}^{22} = - 3,94 \bullet 10^{- 32}$$


$${\hat{Q}}^{1} = \frac{\varepsilon}{\omega} \bullet gg^{11} \bullet n_{1} \bullet \left\lbrack \left( C_{12}^{1} + C_{12}^{2} \right)S^{12} + \left( C_{22}^{1} + C_{22}^{2} \right)S^{22} \right\rbrack$$

Dane:


$$\varepsilon = \frac{1}{R} = \frac{1}{32,4} = 0,031$$


g = a2 = 32, 42 = 1049, 76


g11 = 1


$$n_{1} = - \sqrt{\frac{1}{2a}} = - 0,124$$


C221 = −C122 ⇒    C221 = 387, 5;    C122 = −387, 5  


C121 = C222 ⇒    C121 = 394, 25;     C222 = 394, 25


$$u^{1} = 0 \longmapsto {\hat{Q}}^{1} = \frac{0,031}{15,57} \bullet 1049,76 \bullet 1 \bullet \left( - 0,124 \right) \bullet \left\lbrack \left( 394,25 + \left( - 387,5 \right) \right)0 + \left( 387,5 + 394,25 \right)1 \right\rbrack = - 1,75$$


$$u^{1} = 4,332 \longmapsto {\hat{Q}}^{1} = \frac{0,031}{15,57} \bullet 1049,76 \bullet 1 \bullet \left( - 0,124 \right) \bullet \left\lbrack \left( 394,25 + \left( - 387,5 \right) \right)\left( - 2,04 \bullet 10^{- 4} \right) + \left( 387,5 + 394,25 \right)\left( - 1,14 \bullet 10^{- 4} \right) \right\rbrack = 5,13 \bullet 10^{- 4}$$


$$u^{1} = 8,664 \longmapsto {\hat{Q}}^{1} = - 2,75 \bullet 10^{- 8}$$


$$u^{1} = 12,996 \longmapsto {\hat{Q}}^{1} = - 1,33 \bullet 10^{- 13}$$


$$u^{1} = 17,328 \longmapsto {\hat{Q}}^{1} = 1,01 \bullet 10^{- 17}$$


$$u^{1} = 21,660 \longmapsto {\hat{Q}}^{1} = - 5,11 \bullet 10^{- 22}$$


$$u^{1} = 25,992 \longmapsto {\hat{Q}}^{1} = 7,57 \bullet 10^{- 30}$$


$$u^{1} = 30,322 \longmapsto {\hat{Q}}^{1} = 4,81 \bullet 10^{- 32}$$


$${\hat{M}}^{11} = \frac{\text{gε}g^{11}}{\omega^{2}} \bullet C_{12}^{1} \bullet S^{12} + C_{22}^{1} \bullet S^{22}$$


$$u^{1} = 0 \longmapsto {\hat{M}}^{11} = \frac{1049,76 \bullet 0,031 \bullet 1}{{15,57}^{2}} \bullet \left\lbrack 394,25 \bullet 1 + 387,5 \bullet 0 \right\rbrack = 823,99$$


$$u^{1} = 4,332 \longmapsto {\hat{M}}^{11} = \frac{1049,76 \bullet 0,031 \bullet 1}{{15,57}^{2}} \bullet \left\lbrack 394,25 \bullet ( - 2,04 \bullet 10^{- 4}) + 388,03 \bullet ( - 1,13 \bullet 10^{- 4}) \right\rbrack = - 0,075$$


$$u^{1} = 8,664 \longmapsto {\hat{M}}^{11} = 5,04 \bullet 10^{- 8}$$


$$u^{1} = 12,996 \longmapsto {\hat{M}}^{11} = 1,015 \bullet 10^{- 10}$$


$$u^{1} = 17,328 \longmapsto {\hat{M}}^{11} = - 2,89 \bullet 10^{- 15}$$


$$u^{1} = 21,660 \longmapsto {\hat{M}}^{11} = 1,59 \bullet 10^{- 21}$$


$$u^{1} = 25,992 \longmapsto {\hat{M}}^{11} = 1,20 \bullet 10^{- 26}$$


$$u^{1} = 30,322 \longmapsto {\hat{M}}^{11} = - 1,94 \bullet 10^{- 31}$$


$${\hat{M}}^{22} = - \frac{1}{\omega^{2}}\left\lbrack \left( 1 - \nu \right) \bullet \beta^{22} - g\varepsilon g^{22} \right\rbrack \bullet \left\lbrack C_{12}^{1} \bullet S^{12} + C_{22}^{1} \bullet S^{22} \right\rbrack$$


$${g^{22} = \frac{1}{a^{2}} = \frac{1}{{32,4}^{2}} = 9,53 \bullet 10^{- 4}\backslash n}{u^{1} = 0 \longmapsto {\hat{M}}^{22} = - \frac{1}{{15,57}^{2}}\left\lbrack \left( 1 - 0,2 \right) \bullet 0,031 - 1049,76 \bullet 0,031 \bullet 9,53 \bullet 10^{- 4} \right\rbrack \bullet \left\lbrack 394,25 \bullet 1 + 387,5 \bullet 0 \right\rbrack = 1,01 \bullet 10^{- 2}}$$


$$u^{1} = 4,332 \longmapsto {\hat{M}}^{22} = - \frac{1}{{15,57}^{2}}\left\lbrack \left( 1 - 0,2 \right) \bullet 0,031 - 1049,76 \bullet 0,031 \bullet 9,53 \bullet 10^{- 4} \right\rbrack \bullet \left\lbrack 394,25 \bullet \left( - 2,04 \bullet 10^{- 4} \right) + 388,03 \bullet \left( - 1,13 \bullet 10^{- 4} \right) \right\rbrack = - 9,24 \bullet 10^{- 7}$$


$$u^{1} = 8,664 \longmapsto {\hat{M}}^{22} = 5,72 \bullet 10^{- 13}$$


$$u^{1} = 12,996 \longmapsto {\hat{M}}^{22} = 1,05 \bullet 10^{- 15}$$


$$u^{1} = 17,328 \longmapsto {\hat{M}}^{22} = - 2,99 \bullet 10^{- 20}$$


$$u^{1} = 21,660 \longmapsto {\hat{M}}^{22} = 1,65 \bullet 10^{- 26}$$


$$u^{1} = 25,992 \longmapsto {\hat{M}}^{22} = 1,11 \bullet 10^{- 31}$$


$$u^{1} = 30,322 \longmapsto {\hat{M}}^{22} = - 1,79 \bullet 10^{- 36}$$


$${\hat{w}}^{1} = \frac{1}{2Eh\varepsilon} \bullet \left\lbrack \frac{2H}{\varepsilon} - \left( 1 - \nu \right) \right\rbrack \bullet {\hat{Q}}^{1}$$


$$u^{1} = 8,664 \longmapsto {\hat{w}}^{1} = \frac{1}{0,014 \bullet 34 \bullet 10^{6} \bullet 0,031} \bullet \left\lbrack \frac{30,322}{0,031} - \left( 1 - 0,2 \right) \right\rbrack \bullet \left( - 2,75 \bullet 10^{- 8} \right) = - 2,12 \bullet 10^{- 9}$$


$$u^{1} = 12,996 \longmapsto {\hat{w}}^{1} = - 1,23 \bullet 10^{- 14}$$


$$u^{1} = 17,328 \longmapsto {\hat{w}}^{1} = 9,37 \bullet 10^{- 19}$$


$$u^{1} = 21,660 \longmapsto {\hat{w}}^{1} = - 4,74 \bullet 10^{- 23}$$


$$u^{1} = 25,992 \longmapsto {\hat{w}}^{1} = 8,77 \bullet 10^{- 31}$$


$$u^{1} = 30,322 \longmapsto {\hat{w}}^{1} = 5,57 \bullet 10^{- 33}$$


$${\hat{w}}^{3} = \frac{g}{2Eh} \bullet \left\lbrack C_{12}^{2} \bullet S^{12} + C_{22}^{2} \bullet S^{22} \right\rbrack$$


$$u^{1} = 8,664 \longmapsto {\hat{w}}^{3} = \frac{1049,76}{0,012 \bullet 34 \bullet 10^{6}} \bullet \left\lbrack \left( - 388,56 \right) \bullet 1,002 \bullet 10^{- 8} + 394,24 \bullet \left( - 1,01 \right) \bullet 10^{- 8} \right\rbrack = 2,27 \bullet 10^{- 10}$$


$$u^{1} = 12,996 \longmapsto {\hat{w}}^{3} = - 1,76 \bullet 10^{- 13}$$


$$u^{1} = 17,328 \longmapsto {\hat{w}}^{3} = 4,91 \bullet 10^{- 18}$$


$$u^{1} = 21,660 \longmapsto {\hat{w}}^{3} = - 4,40 \bullet 10^{- 24}$$


$$u^{1} = 25,992 \longmapsto {\hat{w}}^{3} = - 2,94 \bullet 10^{- 29}$$


$$u^{1} = 30,322 \longmapsto {\hat{w}}^{3} = 4,72 \bullet 10^{- 34}$$

  1. Obliczenie fizyczne sił przekrojowych


$$N_{\overset{\overline{}}{\text{ij}}} = \sqrt{\frac{g_{\text{ij}}}{g^{\text{ii}}}\left( {\overset{\overline{}}{N}}_{\text{ij}} + {\hat{N}}_{\text{ij}} \right)}$$


$$Q_{\overset{\overline{}}{i}} = \frac{1}{\sqrt{g^{\text{ij}}}}{\hat{Q}}^{i}$$


$$M_{\overset{\overline{}}{i1}} = \sqrt{\frac{g \bullet g^{11}}{g^{\text{ii}}}}{\hat{M}}^{i2}$$


$$M_{\overset{\overline{}}{i2}} = \sqrt{\frac{g \bullet g^{22}}{g^{\text{ii}}}}{\hat{M}}^{i1}$$

Wartości fizyczne przemieszczeń:


$$w_{1}^{-} = \sqrt{g_{\text{ii}}}\left( {\overset{\overline{}}{w}}^{1} + {\hat{w}}^{1} - {\hat{w}}^{1} \bullet (u^{1} = 0 \right))$$


$$w_{3}^{-} = {\overset{\overline{}}{w}}^{3} + {\hat{w}}^{3}$$

  1. Obliczenie fizyczne sił przekrojowych


$$N_{\overset{\overline{}}{11}} = \sqrt{\frac{g_{11}}{g^{11}}}\left( {\overset{\overline{}}{N}}^{11} + {\hat{N}}^{11} \right)$$


g11 = 1


g11 = 1


$${\hat{N}}^{11} = 0$$


$$N_{\overset{\overline{}}{11}} = {\overset{\overline{}}{N}}^{11}$$


$$N_{\overset{\overline{}}{22}} = \sqrt{\frac{g_{22}}{g^{22}}}\left( {\overset{\overline{}}{N}}^{22} + {\hat{N}}^{22} \right)$$


g22 = a2 = 1049, 76


$$g^{22} = \frac{1}{a^{2}} = \frac{1}{{32,4}^{2}} = 9,53 \bullet 10^{- 4}$$


$${N_{\overset{\overline{}}{22}} = 1049,53\left( {\overset{\overline{}}{N}}^{22} + {\hat{N}}^{22} \right)\backslash n}{M_{\overset{\overline{}}{21}} = - \sqrt{\frac{g \bullet g^{11}}{g^{22}}}{\hat{M}}^{22}}$$


g = a2 = 1049, 76


$$g^{22} = \frac{1}{a^{2}} = \frac{1}{{32,4}^{2}} = 9,53 \bullet 10^{- 4}$$


g11 = 1


$$M_{\overset{\overline{}}{21}} = - 1049,54\ {\hat{M}}^{22}$$


$$M_{\overset{\overline{}}{12}} = - \sqrt{\frac{g \bullet g^{22}}{g^{11}}}{\hat{M}}^{11}$$


g = a2 = 1049, 76


$$g^{22} = \frac{1}{a^{2}} = \frac{1}{{32,4}^{2}} = 9,53 \bullet 10^{- 4}$$


g11 = 1


$$M_{\overset{\overline{}}{12}} = {\hat{M}}^{11}$$


$$w_{1}^{-} = \sqrt{g_{\text{ii}}}\left( {\overset{\overline{}}{w}}^{1} + {\hat{w}}^{1} - {\hat{w}}^{1} \bullet (u^{1} = 0 \right))$$


g11 = 1


$$w_{1}^{-} = \left( {\overset{\overline{}}{w}}^{1} + {\hat{w}}^{1} - {\hat{w}}^{1} \bullet (u^{1} = 0 \right))$$


$$w_{3}^{-} = {\overset{\overline{}}{w}}^{3} + {\hat{w}}^{3}$$

ZESTAWIENIE WARTOŚCI FIZYCZNYCH SIŁ PRZEKROJOWYCH ORAZ PRZEMIESZCZEŃ

Ui N-11 N-22 M-11 M-22 Q-1 w-1 w-3
0 -16,4497 6,083117 -7,26157E-05 2,68534E-05 0 0 -0,07041
0,1 -16,3412 6,042994 -7,21368E-05 2,66763E-05 -6,11296E-07 -4,4E-05 -0,06995
0,2 -16,2327 6,00287 -7,16578E-05 2,64992E-05 -1,21855E-06 -8,7E-05 -0,06948
0,3 -16,1242 5,962747 -7,11788E-05 2,6322E-05 -1,82175E-06 -0,00013 -0,06902
0,4 -16,0157 5,922623 -7,06999E-05 2,61449E-05 -2,42091E-06 -0,00017 -0,06855
0,5 -15,9072 5,8825 -7,02209E-05 2,59678E-05 -3,01602E-06 -0,00022 -0,06809
0,6 -15,7987 5,842377 -6,97419E-05 2,57907E-05 -3,60709E-06 -0,00026 -0,06762
0,7 -15,6902 5,802253 -6,9263E-05 2,56135E-05 -4,19412E-06 -0,0003 -0,06716
0,8 -15,5817 5,76213 -6,8784E-05 2,54364E-05 -4,7771E-06 -0,00034 -0,0667
0,9 -15,4732 5,722006 -6,83051E-05 2,52593E-05 -5,35603E-06 -0,00038 -0,06623
1 -15,3647 5,681883 -6,78261E-05 2,50822E-05 -5,93092E-06 -0,00043 -0,06577
1,1 -15,2562 5,641759 -6,73471E-05 2,49051E-05 -6,50176E-06 -0,00047 -0,0653
1,2 -15,1477 5,601636 -6,68682E-05 2,47279E-05 -7,06855E-06 -0,00051 -0,06484
1,3 -15,0392 5,561512 -6,63892E-05 2,45508E-05 -7,63131E-06 -0,00055 -0,06437
1,4 -14,9307 5,521389 -6,59102E-05 2,43737E-05 -8,19001E-06 -0,00059 -0,06391
1,5 -14,8222 5,481265 -6,54313E-05 2,41966E-05 -8,74467E-06 -0,00063 -0,06344
1,6 -14,7137 5,441142 -6,49523E-05 2,40195E-05 -9,29529E-06 -0,00067 -0,06298
1,7 -14,6052 5,401019 -6,44733E-05 2,38423E-05 -9,84186E-06 -0,00071 -0,06252
1,8 -14,4967 5,360895 -6,39944E-05 2,36652E-05 -1,03844E-05 -0,00074 -0,06205
1,9 -14,3882 5,320772 -6,35154E-05 2,34881E-05 -1,09229E-05 -0,00078 -0,06159
2 -14,2797 5,280648 -6,30364E-05 2,3311E-05 -1,14573E-05 -0,00082 -0,06112
2,1 -14,1712 5,240525 -6,25575E-05 2,31338E-05 -1,19877E-05 -0,00086 -0,06066
2,2 -14,0627 5,200401 -6,20785E-05 2,29567E-05 -1,2514E-05 -0,00105 -0,07022
2,3 -13,9542 5,160278 -6,15996E-05 2,27796E-05 -1,30363E-05 -0,00109 -0,06968
2,4 -13,8457 5,120154 -6,11206E-05 2,26025E-05 -1,35546E-05 -0,00113 -0,06914
2,5 -13,7372 5,080031 -6,06416E-05 2,24254E-05 -1,40688E-05 -0,00118 -0,0686
2,6 -13,6287 5,039907 -6,01627E-05 2,22482E-05 -1,45789E-05 -0,00122 -0,06805
2,7 -13,5202 4,999784 -5,96837E-05 2,20711E-05 -1,50851E-05 -0,00126 -0,06751
2,8 -13,4117 4,95966 -5,92047E-05 2,1894E-05 -1,55871E-05 -0,0013 -0,06697
2,9 -13,3032 4,919537 -5,87258E-05 2,17169E-05 -1,60852E-05 -0,00134 -0,06643
3 -13,1947 4,879414 -5,82468E-05 2,15398E-05 -1,65791E-05 -0,00139 -0,06589
3,1 -13,0862 4,83929 -5,77678E-05 2,13626E-05 -1,70691E-05 -0,00143 -0,06534
3,2 -12,9777 4,799167 -5,72889E-05 2,11855E-05 -1,7555E-05 -0,00147 -0,0648
3,3 -12,8692 4,759043 -5,68099E-05 2,10084E-05 -1,80368E-05 -0,00151 -0,06426
3,4 -12,7607 4,71892 -5,6331E-05 2,08313E-05 -1,85146E-05 -0,00155 -0,06372
3,5 -12,6522 4,678796 -5,5852E-05 2,06541E-05 -1,89884E-05 -0,00159 -0,06318
3,6 -12,5437 4,638673 -5,5373E-05 2,0477E-05 -1,94581E-05 -0,00163 -0,06264
3,7 -12,4352 4,598549 -5,48941E-05 2,02999E-05 -1,99237E-05 -0,00166 -0,06209
3,8 -12,3267 4,558426 -5,44151E-05 2,01228E-05 -2,03853E-05 -0,0017 -0,06155
3,9 -12,2182 4,518302 -5,39361E-05 1,99457E-05 -2,08429E-05 -0,00174 -0,06101
4 -10,3797 4,478179 -3,3664E-05 1,45238E-05 -1,56464E-05 -0,00178 -0,06047
4,1 -10,2867 4,438056 -3,33624E-05 1,43937E-05 -1,59766E-05 -0,00182 -0,05993
4,2 -10,1937 4,397932 -3,30607E-05 1,42636E-05 -1,63039E-05 -0,00185 -0,05938
4,3 -10,1007 4,357809 -3,27591E-05 1,41334E-05 -1,66281E-05 -0,00189 -0,05884
4,4 -10,0077 4,317685 -3,24575E-05 1,40033E-05 -1,69495E-05 -0,00231 -0,06996
4,5 -9,91473 4,277562 -3,21559E-05 1,38732E-05 -1,72678E-05 -0,00235 -0,06931
4,6 -9,82173 4,237438 -3,18543E-05 1,3743E-05 -1,75832E-05 -0,0024 -0,06866
4,7 -9,72873 4,197315 -3,15526E-05 1,36129E-05 -1,78956E-05 -0,00244 -0,06801
4,8 -9,63573 4,157191 -3,1251E-05 1,34828E-05 -1,8205E-05 -0,00248 -0,06736
4,9 -9,54273 4,117068 -3,09494E-05 1,33527E-05 -1,85114E-05 -0,00252 -0,06671
5 -9,44973 4,076944 -3,06478E-05 1,32225E-05 -1,88149E-05 -0,00256 -0,06606
5,1 -9,35673 4,036821 -3,03462E-05 1,30924E-05 -1,91154E-05 -0,0026 -0,06541
5,2 -9,26373 3,996698 -3,00445E-05 1,29623E-05 -1,9413E-05 -0,00264 -0,06476
5,3 -9,17073 3,956574 -2,97429E-05 1,28321E-05 -1,97075E-05 -0,00268 -0,06411
5,4 -9,07773 3,916451 -2,94413E-05 1,2702E-05 -1,99991E-05 -0,00272 -0,06346
5,5 -8,98473 3,876327 -2,91397E-05 1,25719E-05 -2,02878E-05 -0,00276 -0,06281
5,6 -8,89173 3,836204 -2,8838E-05 1,24417E-05 -2,05734E-05 -0,0028 -0,06216
5,7 -8,79873 3,79608 -2,85364E-05 1,23116E-05 -2,08561E-05 -0,00284 -0,06151
5,8 -8,70573 3,755957 -2,82348E-05 1,21815E-05 -2,11358E-05 -0,00288 -0,06085
5,9 -8,61273 3,715833 -2,79332E-05 1,20514E-05 -2,14125E-05 -0,00292 -0,0602
6 -7,09978 3,67571 -1,59905E-05 8,27863E-06 -1,50599E-05 -0,00295 -0,05955
6,1 -7,02228 3,635586 -1,58159E-05 8,18826E-06 -1,5248E-05 -0,00299 -0,0589
6,2 -6,94478 3,595463 -1,56414E-05 8,09789E-06 -1,54339E-05 -0,00303 -0,05825
6,3 -6,86728 3,55534 -1,54668E-05 8,00752E-06 -1,56179E-05 -0,00306 -0,0576
6,4 -6,78978 3,515216 -1,52923E-05 7,91715E-06 -1,57997E-05 -0,0031 -0,05695
6,5 -6,71228 3,475093 -1,51177E-05 7,82679E-06 -1,59795E-05 -0,00313 -0,0563
6,6 -6,63478 3,434969 -1,49432E-05 7,73642E-06 -1,61572E-05 -0,00317 -0,05565
6,7 -6,55728 3,394846 -1,47686E-05 7,64605E-06 -1,63329E-05 -0,0032 -0,055
6,8 -6,47978 3,354722 -1,45941E-05 7,55568E-06 -1,65065E-05 -0,00324 -0,05435
6,9 -6,40228 3,314599 -1,44195E-05 7,46531E-06 -1,6678E-05 -0,00327 -0,0537
7 -6,32478 3,274475 -1,4245E-05 7,37494E-06 -1,68475E-05 -0,0033 -0,05305
7,1 -6,24728 3,234352 -1,40704E-05 7,28458E-06 -1,70149E-05 -0,00334 -0,0524
7,2 -6,16978 3,194228 -1,38959E-05 7,19421E-06 -1,71803E-05 -0,00337 -0,05175
7,3 -6,09228 3,154105 -1,37213E-05 7,10384E-06 -1,73435E-05 -0,0034 -0,0511
7,4 -6,01478 3,113981 -1,35468E-05 7,01347E-06 -1,75048E-05 -0,00343 -0,05045
7,5 -5,93728 3,073858 -1,33722E-05 6,9231E-06 -1,76639E-05 -0,00346 -0,0498
7,6 -5,85978 3,033735 -1,31977E-05 6,83274E-06 -1,7821E-05 -0,0035 -0,04915
7,7 -5,78228 2,993611 -1,30231E-05 6,74237E-06 -1,7976E-05 -0,00353 -0,0485
7,8 -5,70478 2,953488 -1,28486E-05 6,652E-06 -1,8129E-05 -0,00356 -0,04785
7,9 -5,62728 2,913364 -1,2674E-05 6,56163E-06 -1,82799E-05 -0,00359 -0,0472
8 -5,54978 2,873241 -1,24995E-05 6,47126E-06 -1,84287E-05 -0,00361 -0,04655
8,1 -5,47228 2,833117 -1,23249E-05 6,38089E-06 -1,85755E-05 -0,00364 -0,0459
8,2 -5,39478 2,792994 -1,21504E-05 6,29053E-06 -1,87202E-05 -0,00367 -0,04525
8,3 -5,31728 2,75287 -1,19758E-05 6,20016E-06 -1,88628E-05 -0,0037 -0,0446
8,4 -5,23978 2,712747 -1,18013E-05 6,10979E-06 -1,90034E-05 -0,00373 -0,04395
8,5 -5,16228 2,672623 -1,16267E-05 6,01942E-06 -1,91419E-05 -0,00375 -0,0433
8,6 -5,08478 2,6325 -1,14522E-05 5,92905E-06 -1,92784E-05 -0,00378 -0,04265
8,7 -5,00728 2,592377 -1,12776E-05 5,83869E-06 -1,94128E-05 -0,00381 -0,042
8,8 -4,92978 2,552253 -1,11031E-05 5,74832E-06 -1,95451E-05 -0,00383 -0,04135
8,9 -4,85228 2,51213 -1,09285E-05 5,65795E-06 -1,96753E-05 -0,00386 -0,0407
9 -4,77478 2,472006 -1,0754E-05 5,56758E-06 -1,98035E-05 -0,00388 -0,04005
9,1 -4,69728 2,431883 -1,05794E-05 5,47721E-06 -1,99297E-05 -0,00391 -0,0394
9,2 -4,61978 2,391759 -1,04049E-05 5,38685E-06 -2,00537E-05 -0,00393 -0,03875
9,3 -4,54228 2,351636 -1,02303E-05 5,29648E-06 -2,01757E-05 -0,00396 -0,0381
9,4 -4,46478 2,311512 -1,00558E-05 5,20611E-06 -2,02957E-05 -0,00398 -0,03745
9,5 -4,38728 2,271389 -9,88125E-06 5,11574E-06 -2,04135E-05 -0,004 -0,0368
9,6 -4,30978 2,231265 -9,7067E-06 5,02537E-06 -2,05293E-05 -0,00403 -0,03615
9,7 -4,23228 2,191142 -9,53215E-06 4,935E-06 -2,06431E-05 -0,00405 -0,0355
9,8 -4,15478 2,151019 -9,3576E-06 4,84464E-06 -2,07548E-05 -0,00407 -0,03485
9,9 -4,07728 2,110895 -9,18305E-06 4,75427E-06 -2,08644E-05 -0,00409 -0,0342
10 -3,99978 2,070772 -9,0085E-06 4,6639E-06 -2,09719E-05 -0,00411 -0,03355
10,1 -3,92228 2,030648 -8,83395E-06 4,57353E-06 -2,10774E-05 -0,00413 -0,0329
10,2 -3,84478 1,990525 -8,6594E-06 4,48316E-06 -2,11809E-05 -0,00415 -0,03225
10,3 -3,76728 1,950401 -8,48485E-06 4,3928E-06 -2,12822E-05 -0,00417 -0,0316
10,4 -3,68978 1,910278 -8,3103E-06 4,30243E-06 -2,13815E-05 -0,00419 -0,03095
10,5 -3,61228 1,870154 -8,13575E-06 4,21206E-06 -2,14787E-05 -0,00421 -0,0303
10,6 -3,53478 1,830031 -7,9612E-06 4,12169E-06 -2,15739E-05 -0,00423 -0,02965
10,7 -3,45728 1,789907 -7,78666E-06 4,03132E-06 -2,1667E-05 -0,00425 -0,029
10,8 -3,37978 1,749784 -7,61211E-06 3,94095E-06 -2,17581E-05 -0,00427 -0,02835
10,9 -3,30228 1,70966 -7,43756E-06 3,85059E-06 -2,1847E-05 -0,00535 -0,03462
11 -3,22478 1,669537 -7,26301E-06 3,76022E-06 -2,19339E-05 -0,00537 -0,03381
11,1 -3,14728 1,629414 -7,08846E-06 3,66985E-06 -2,20188E-05 -0,00539 -0,033
11,2 -3,06978 1,58929 -6,91391E-06 3,57948E-06 -2,21016E-05 -0,00541 -0,03219
11,3 -2,99228 1,549167 -6,73936E-06 3,48911E-06 -2,21823E-05 -0,00543 -0,03137
11,4 -2,91478 1,509043 -6,56481E-06 3,39875E-06 -2,2261E-05 -0,00545 -0,03056
11,5 -2,83728 1,46892 -6,39026E-06 3,30838E-06 -2,23376E-05 -0,00547 -0,02975
11,6 -2,75978 1,428796 -6,21571E-06 3,21801E-06 -2,24121E-05 -0,00548 -0,02894
11,7 -2,68228 1,388673 -6,04116E-06 3,12764E-06 -2,24846E-05 -0,0055 -0,02812
11,8 -2,60478 1,348549 -5,86661E-06 3,03727E-06 -2,2555E-05 -0,00552 -0,02731
11,9 -2,52728 1,308426 -5,69206E-06 2,94691E-06 -2,26233E-05 -0,00554 -0,0265
12 -2,44978 1,268302 -5,51751E-06 2,85654E-06 -2,26896E-05 -0,00555 -0,02568
12,1 -2,37228 1,228179 -5,34296E-06 2,76617E-06 -2,27538E-05 -0,00557 -0,02487
12,2 -2,29478 1,188056 -5,16841E-06 2,6758E-06 -2,28159E-05 -0,00558 -0,02406
12,3 -2,21728 1,147932 -4,99386E-06 2,58543E-06 -2,2876E-05 -0,0056 -0,02325
12,4 -2,13978 1,107809 -4,81931E-06 2,49506E-06 -2,2934E-05 -0,00561 -0,02243
12,5 -2,06228 1,067685 -4,64476E-06 2,4047E-06 -2,299E-05 -0,00563 -0,02162
12,6 -1,98478 1,027562 -4,47021E-06 2,31433E-06 -2,30439E-05 -0,00564 -0,02081
12,7 -1,90728 0,987438 -4,29566E-06 2,22396E-06 -2,30957E-05 -0,00565 -0,02
12,8 -1,82978 0,947315 -4,12111E-06 2,13359E-06 -2,31455E-05 -0,00566 -0,01918
12,9 -1,75228 0,907191 -3,94657E-06 2,04322E-06 -2,31932E-05 -0,00568 -0,01837
13 -1,67478 0,867068 -3,77202E-06 1,95286E-06 -2,32388E-05 -0,00569 -0,01756
13,1 -1,59728 0,826944 -3,59747E-06 1,86249E-06 -2,32824E-05 -0,0057 -0,01675
13,2 -1,51978 0,786821 -3,42292E-06 1,77212E-06 -2,33239E-05 -0,00571 -0,01593
13,3 -1,44228 0,746698 -3,24837E-06 1,68175E-06 -2,33633E-05 -0,00572 -0,01512
13,4 -1,36478 0,706574 -3,07382E-06 1,59138E-06 -2,34007E-05 -0,00573 -0,01431
13,5 -1,28728 0,666451 -2,89927E-06 1,50101E-06 -2,3436E-05 -0,00574 -0,0135
13,6 -1,20978 0,626327 -2,72472E-06 1,41065E-06 -2,34693E-05 -0,00574 -0,01268
13,7 -1,13228 0,586204 -2,55017E-06 1,32028E-06 -2,35004E-05 -0,00575 -0,01187
13,8 -1,05478 0,54608 -2,37562E-06 1,22991E-06 -2,35296E-05 -0,00576 -0,01106
13,9 -0,97727 0,505957 -2,20107E-06 1,13954E-06 -2,35566E-05 -0,00577 -0,01025
14 -0,89978 0,465833 -2,02652E-06 1,04917E-06 -2,35816E-05 -0,00577 -0,00943
14,1 -0,82228 0,42571 -1,85197E-06 9,58806E-07 -2,36045E-05 -0,00578 -0,00862
14,2 -0,74478 0,385586 -1,67742E-06 8,68438E-07 -2,36254E-05 -0,00578 -0,00781
14,3 -0,66727 0,345463 -1,50287E-06 7,7807E-07 -2,36442E-05 -0,00579 -0,007
14,4 -0,58977 0,30534 -1,32832E-06 6,87702E-07 -2,3661E-05 -0,00579 -0,00618
14,5 -0,51228 0,265216 -1,15377E-06 5,97333E-07 -2,36756E-05 -0,00579 -0,00537
14,6 -0,43478 0,225093 -9,79223E-07 5,06965E-07 -2,36882E-05 -0,0058 -0,00456
14,7 -0,35728 0,184969 -8,04673E-07 4,16597E-07 -2,36988E-05 -0,0058 -0,00375
14,8 -0,27977 0,144846 -6,30124E-07 3,26229E-07 -2,37073E-05 -0,0058 -0,00293
14,9 -0,20227 0,104722 -4,55574E-07 2,35861E-07 -2,37137E-05 -0,0058 -0,00212
15 -0,12478 0,064599 -2,81025E-07 1,45493E-07 -2,3718E-05 -0,0058 -0,00131
15,1 -0,04728 0,024475 -1,06475E-07 5,51246E-08 -2,37203E-05 -0,00581 -0,0005
15,161 0 0 0 0 -2,37207E-05 -0,00581 0

Wyszukiwarka

Podobne podstrony:
mˇj projekt
Projekt mˇj
Projekt mˇj
Projekt mˇj
nowele - h. sienkiewicz, 2, Bohater m˙j nazywa˙ si˙ Bartek S˙owik, ale poniewa˙ mia˙ zwyczaj
Dowidzenia mˇj kochany
serwomechanizm mˇj w asny =]
05 h zaokrąglanie, Politechnika Lubelska, Studia, Studia, organizacja produkcji, laborki-moje, Wydzi
System automatycznego zabez, m˙. asp. J˙zef Mastalerz
05 e przeciąganie, Politechnika Lubelska, Studia, Studia, organizacja produkcji, laborki-moje, Wydzi
Projekt-wytrzymałość Omieciuch Łukasz, Przodki IL PW Inżynieria Lądowa budownictwo Politechnika Wars
projekt o narkomanii(1)
!!! ETAPY CYKLU PROJEKTU !!!id 455 ppt
Wykład 3 Dokumentacja projektowa i STWiOR
Projekt nr 1piątek

więcej podobnych podstron