Metoda analityczna
Dane do projektu
$$I_{b} = \frac{0,3*{0,6}^{3}}{12} = 0,0054\ m^{4}$$
Eb = 32GPa
ρb = 2500 kg/m3
m1 = 250kN
Segment 1
$$k_{1} = \frac{12E_{b}I_{b}}{h^{3}} = \frac{12*32*10^{9}*0,0054}{2^{3}} = 259200000\frac{N}{m}$$
m1 = 250N = 25kg
m2 = 2500 * 4 * 0, 3 * 0, 6 = 1800kg
m3 = 2500 * 0, 3 * 0, 6 * 4 = 1800kg
m = m1 + m2 + m3 + m4 = 1800 + 1800 + 25 = 3625kg
$$\omega = \left( \frac{k}{m} \right)^{\frac{1}{2}} = {\left( \frac{259200000}{3625} \right)\ }^{\frac{1}{2}} = 267,4\frac{\text{rad}}{s}$$
$$T = \frac{2\pi}{\omega} = \frac{2*3,1416}{267,4} = 0,023s$$
$$f = \frac{1}{T} = \frac{1}{0,023} = 43,48\lbrack Hz\rbrack$$
$$a_{g} = 1,2\frac{m}{s^{2}}$$
ξ = 3%
$$\eta = \left( \frac{10}{5 + \xi} \right)^{0,5} = \left( \frac{10}{5 + 3} \right)^{0,5} = 1,11$$
S = 1, 5
$$S_{\text{ea}}\left( T \right) = a_{g}*S*\left( 1 + \frac{T}{T_{B}}\left( 2,5\eta - 1 \right) \right) = 1,2*1,5*\left( 1 + \frac{0,023}{0,3}\left( 2,5*1,11 - 1 \right) \right) = 2,04\frac{m}{s^{2}}\ $$
$$S_{\text{eu}}\left( T \right) = S_{\text{ea}}\left( T \right)\left( \frac{T}{2\pi} \right)^{2} = 2,04*\left( \frac{0,023}{2*3,1416} \right)^{2} = 0,000027\text{\ m}$$
fsu = k * Seu(T) = 259200000 * 0, 000027 = 6, 99 kN
Segment 2
$$k_{1} = \frac{12E_{b}I_{b}}{h^{3}} = \frac{12*32*10^{9}*0,0054}{5^{3}} = 16588800\frac{N}{m}$$
m1 = 250N = 25kg
m2 = 2500 * 10 * 0, 3 * 0, 6 = 4500kg
m3 = 2500 * 0, 3 * 0, 6 * 4 = 1800kg
m = m1 + m2 + m3 + m4 = 4500 + 1800 + 25 = 6325kg
$$\omega = \left( \frac{k}{m} \right)^{\frac{1}{2}} = {\left( \frac{259200000}{3625} \right)\ }^{\frac{1}{2}} = 267,4\frac{\text{rad}}{s}$$
$$T = \frac{2\pi}{\omega} = \frac{2*3,1416}{267,4} = 0,023s$$
$$f = \frac{1}{T} = \frac{1}{0,023} = 43,48\lbrack Hz\rbrack$$
$$a_{g} = 1,2\frac{m}{s^{2}}$$
ξ = 3%
$$\eta = \left( \frac{10}{5 + \xi} \right)^{0,5} = \left( \frac{10}{5 + 3} \right)^{0,5} = 1,11$$
S = 1, 5
$$S_{\text{ea}}\left( T \right) = a_{g}*S*\left( 1 + \frac{T}{T_{B}}\left( 2,5\eta - 1 \right) \right) = 1,2*1,5*\left( 1 + \frac{0,023}{0,3}\left( 2,5*1,11 - 1 \right) \right) = 2,04\frac{m}{s^{2}}\ $$
$$S_{\text{eu}}\left( T \right) = S_{\text{ea}}\left( T \right)\left( \frac{T}{2\pi} \right)^{2} = 2,04*\left( \frac{0,023}{2*3,1416} \right)^{2} = 0,000027\ m$$
fsu = k * Seu(T) = 259200000 * 0, 000027 = 6, 99 kN
Metoda numeryczna (ARSAP 2012)