Stabilność – kryterium Nyquista
Kryterium Nyquista bada stabilność układu zamkniętego na podstawie przebiegu charakterystyki częstotliwościowej układu otwartego.
Z(s) Y(s)
-
Otwarcie sprzężenia zwrotnego
Y1(s) E(s) -
Y0(s)
$$G_{z}\left( s \right) = \frac{Y(s)}{Y_{0}(s)} = \frac{R(s) \bullet G_{0}(s)}{1 + R(s) \bullet G_{0}(s)}$$
O stabilności układu decyduje rozkład miejsc zerowych równania charakterystycznego. Wszystkie miejsca zerowe muszą leżeć lewej półpłaszczyźnie płaszczyzny zespolonej – części rzeczywiste miejsc zerowych muszą być mniejsze od zera. Stąd należy rozwiązać następujące równanie:
Mz(s) = 1 + R(s) • G0(s) = 0
R(s) • G0(s) = −1
Rozwiązaniem tego równania na płaszczyźnie zespolonej jest przebieg charakterystyki częstotliwościowej:
R(s) • G0(s) = ( − 1, j0)
Jeżeli charakterystyka częstotliwościowa układu otwartego nie obejmuje punktu (-1,j0), to układ po zamknięciu będzie stabilny.
Jeżeli charakterystyka częstotliwościowa układu otwartego obejmuje punkt (-1,j0) lub przechodzi przez niego, to układ po zamknięciu będzie niestabilny lub na granicy stabilności.
Badanie układu otwartego mówi nam o stabilności układu regulacji po zamknięciu pętli sprzężenia zwrotnego.
Przykład:
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
R(s) = kp
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}}{\left\lbrack T_{1}T_{2}s^{2} + \left( T_{1} + T_{2} \right)s + 1 \right\rbrack\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}}{\left\lbrack T_{1}T_{2}T_{3}s^{3} + \left( T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3} \right)s^{2} + \left( T_{1} + T_{2} + T_{3} \right)s + 1 \right\rbrack\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}}{\begin{bmatrix}
T_{1}T_{2}T_{3}T_{4}s^{4} + \left( T_{1}T_{2}T_{3} + T_{1}T_{2}T_{4} + {T_{1}T_{3}T}_{4} + T_{2}T_{3}T_{4} \right)s^{3} + \\
\left( T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3} + T_{1}T_{4} + T_{2}T_{4} + T_{3}T_{4} \right)s^{2} \\
+ \left( T_{1} + T_{2} + T_{3} + T_{4} \right)s + 1 \\
\end{bmatrix}\left( T_{5}s + 1 \right)}$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}}{\begin{bmatrix}
T_{1}T_{2}T_{3}T_{4}T_{5}s^{5} + \\
\left( T_{1}T_{2}T_{3}T_{4} + T_{1}T_{2}T_{3}T_{5} + T_{1}T_{2}T_{4}T_{5} + {T_{1}T_{3}T}_{4}T_{5} + T_{2}T_{3}T_{4}T_{5} \right)s^{4} + \\
\left( T_{1}T_{2}T_{5} + T_{1}T_{3}T_{5} + {T_{2}T_{3}T}_{5} + T_{1}T_{4}T_{5} + T_{2}T_{4}T_{5} + T_{3}T_{4}T_{5} + T_{1}T_{2}T_{3} + T_{1}T_{2}T_{4} + {T_{1}T_{3}T}_{4} + T_{2}T_{3}T_{4} \right)s^{3} \\
+ \left( T_{1}T_{5} + T_{2}T_{5} + T_{3}T_{5} + T_{4}T_{5} + T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3} + T_{1}T_{4} + T_{2}T_{4} + T_{3}T_{4} \right)s^{2} \\
+ \left( T_{1} + T_{2} + T_{3} + T_{4} + T_{5} \right)s + 1 \\
\end{bmatrix}}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G_{\text{uo}}\left( s \right) = \frac{k_{p}}{\begin{bmatrix}
120s^{5} + \left( 24 + 30 + 40 + 60 + 120 \right)s^{4} + \\
\left( 10 + 15 + 30 + 20 + 40 + 60 + 6 + 8 + 12 + 24 \right)s^{3} \\
+ \left( 5 + 10 + 15 + 20 + 2 + 3 + 6 + 4 + 8 + 12 \right)s^{2} \\
+ \left( 1 + 2 + 3 + 4 + 5 \right)s + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( s \right) = \frac{k_{p}}{\begin{bmatrix}
120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}}{\begin{bmatrix}
120\left( \text{jω} \right)^{5} + 274\left( \text{jω} \right)^{4} + 225\left( \text{jω} \right)^{3} + 85\left( \text{jω} \right)^{2} + 15\left( \text{jω} \right) + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}}{\begin{bmatrix}
120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right) - j\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) \\
\end{bmatrix}}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right) + j\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) \\
\end{bmatrix}\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right) - j\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right) - j\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) \\
\end{bmatrix}}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}}$$
$$P_{\text{uo}}\left( \omega \right) = \frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}}$$
$$Q_{\text{uo}}\left( \omega \right) = \frac{- k_{p}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = - 1 \\
\frac{- k_{p}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = - 1 \\
- k_{p}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = - 1 \\
120\omega^{5} - 225\omega^{3} + 15\omega = 0 \\
\end{matrix} \right.\ $$
15ω(8ω4−15ω2+1) = 0
Δ = 225 − 4 • 8 = 193
ω12 = 0, 069222 i ω22 = 1, 805778
ω1 = 0, 2631 i ω2 = 1, 3438
$$P_{\text{uo}}\left( 0,2631 \right) = \frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = - 1$$
$$\frac{k_{p}\left( 274\left( 0,2631 \right)^{4} - 85\left( 0,2631 \right)^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\left( 0,2631 \right)^{4} - 85\left( 0,2631 \right)^{2} + 1 \right)^{2} + \left( 120\left( 0,2631 \right)^{5} - 225\left( 0,2631 \right)^{3} + 15\left( 0,2631 \right) \right)^{2} \\
\end{bmatrix}} = - 1$$
$$\frac{k_{p}}{\left( 274\left( 0,2631 \right)^{4} - 85\left( 0,2631 \right)^{2} + 1 \right)} = - 1$$
kp = −274(0,2631)4 + 85(0,2631)2 − 1
kp = 3, 571
$$\left\{ \begin{matrix}
\omega = 0,2631 \\
\left( k_{p} \right)_{\text{kr}} = 3,571 \\
\end{matrix} \right.\ $$
Warunek: zapas modułu ΔL=6dB
ΔL = 20lgΔM = −6
$$\Delta M = 10^{- \frac{6}{20}}$$
ΔM = 0, 5
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 0,5 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = - 0,5 \\
\frac{- k_{p}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\omega = 0,2631 \\
k_{p} = 1,7855 \\
\end{matrix} \right.\ $$
Warunek: zapas fazy Δϕ=60 ̊
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\varphi = \frac{Q\left( \omega \right)}{P\left( \omega \right)} = \sqrt{3} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\sqrt{{P\left( \omega \right)}^{2} + {Q\left( \omega \right)}^{2}} = 1 \\
\tan\varphi = \frac{Q\left( \omega \right)}{P\left( \omega \right)} = \sqrt{3} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\sqrt{\begin{matrix}
\left( \frac{k_{p}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} \right)^{2} + \\
\left( \frac{- k_{p}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)}{\begin{bmatrix}
\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2} \\
\end{bmatrix}} \right)^{2} \\
\end{matrix}} = 1 \\
\tan\varphi = \frac{Q\left( \omega \right)}{P\left( \omega \right)} = \sqrt{3} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2}}} = 1 \\
\frac{- \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)}{274\omega^{4} - 85\omega^{2} + 1} = \sqrt{3} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = \sqrt{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2}} \\
120\omega^{5} - 225\omega^{3} + 15\omega = - \sqrt{3}\left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = \sqrt{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2}} \\
120\omega^{5} + 274\sqrt{3}\omega^{4} - 225\omega^{3} - 85\sqrt{3}\omega^{2} + 15\omega + \sqrt{3} = 0 \\
\end{matrix} \right.\ $$
Polecenie w Matlab
>> roots([120 274*sqrt(3) -225 -85*sqrt(3) 15 sqrt(3)])
ans =
-4.3215
0.7104
-0.4263
ω= 0.1542
-0.0715
$$\left\{ \begin{matrix}
k_{p} = \sqrt{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)^{2}} \\
\omega = \ 0.1542 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = 1.731 \\
\omega = \ 0.1542 \\
\end{matrix} \right.\ $$
Przykład:
Obiekt inercyjny piątego rzędu i regulator PI
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$R\left( s \right) = k_{p}\left( 1 + \frac{1}{T_{i}s} \right)$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + \frac{1}{T_{i}s} \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + \frac{1}{T_{i}\text{jω}} \right)}{\begin{bmatrix}
120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\
\end{bmatrix}}$$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 - j\frac{1}{T_{i}\omega} \right)$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a - \frac{b}{T_{i}\omega} - j\frac{a}{T_{i}\omega} - jb}{\left( a^{2} + b^{2} \right)}$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a - \frac{b}{T_{i}\omega} - j\left( \frac{a}{T_{i}\omega} + b \right)}{\left( a^{2} + b^{2} \right)}$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = - k_{p}\frac{\frac{a}{T_{i}\omega} + b}{\left( a^{2} + b^{2} \right)}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = - 1 \\
- k_{p}\frac{\frac{a}{T_{i}\omega} + b}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{i}\omega = - \frac{a}{b}$$
$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{1}{a} = - 1$$
kp = −a
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{i}\omega = - \frac{a}{b} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = b$$
$$\frac{k_{p}}{T_{i}\omega} = \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)$$
Szukamy ekstremum funkcji (duże wzmocnienie i duże całkowanie-mała stała czasowa to stosunek ma być największy)
$$\frac{k_{p}}{T_{i}} = 15\left( 8\omega^{6} - 15\omega^{4} + \omega^{2} \right)$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 15\left( 48\omega^{5} - 60\omega^{3} + 2\omega \right)$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 30\omega\left( 24\omega^{4} - 30\omega^{2} + 1 \right)$$
Δ = 900 − 4 • 24 = 804
ω12 = 0, 034273 i ω22 = 1, 215727
ω1 = 0, 18513 i ω2 = 1, 1026
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{i}\omega = - \frac{a}{b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - \left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\
T_{i}\omega = - \frac{274\omega^{4} - 85\omega^{2} + 1}{120\omega^{5} - 225\omega^{3} + 15\omega} \\
\end{matrix} \right.\ $$
Dla ω=0,18513
$$\left\{ \begin{matrix}
\left( k_{p} \right)_{\text{kr}} = 1,59 \\
T_{i} = 6,25 \\
\end{matrix} \right.\ $$
Warunek: zapas modułu ΔL=ΔdB
ΔL = 20lgΔM = −Δ
$$\Delta M = 10^{- \frac{\Delta}{20}}$$
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1 \\
{- k}_{p}\frac{\frac{a}{T_{i}\omega} + b}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{i}\omega = - \frac{a}{b}$$
$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1$$
$$k_{p}\frac{1}{a} = \Delta M - 1$$
kp = −a(1−ΔM)
kp = −(1−ΔM)(274ω4−85ω2+1)
$$\left\{ \begin{matrix}
k_{p} = - a\left( 1 - \Delta M \right) \\
T_{i}\omega = - \frac{a}{b} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = b\left( 1 - \Delta M \right)$$
$$\frac{k_{p}}{T_{i}\omega} = \left( 1 - \Delta M \right)\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)$$
Szukamy ekstremum funkcji (duże wzmocnienie i duże całkowanie-mała stała czasowa to stosunek ma być największy)
$$\frac{k_{p}}{T_{i}} = 15\left( 1 - \Delta M \right)\left( 8\omega^{6} - 15\omega^{4} + \omega^{2} \right)$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 15\left( 1 - \Delta M \right)\left( 48\omega^{5} - 60\omega^{3} + 2\omega \right)$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 30\omega\left( 1 - \Delta M \right)\left( 24\omega^{4} - 30\omega^{2} + 1 \right)$$
Δ = 900 − 4 • 24 = 804
ω12 = 0, 034273 i ω22 = 1, 215727
ω1 = 0, 18513 i ω2 = 1, 1026
$$\left\{ \begin{matrix}
k_{p} = - a\left( 1 - \Delta M \right) \\
T_{i}\omega = - \frac{a}{b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - \left( 1 - \Delta M \right)\left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\
T_{i}\omega = - \frac{274\omega^{4} - 85\omega^{2} + 1}{120\omega^{5} - 225\omega^{3} + 15\omega} \\
\end{matrix} \right.\ $$
Dla ΔL=6dB i ω=0,18513
$$\left\{ \begin{matrix}
k_{p} = 0,795679 \\
T_{i} = 6,25 \\
\end{matrix} \right.\ $$
Warunek: zapas fazy Δϕ
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\sqrt{{P\left( \omega \right)}^{2} + {Q\left( \omega \right)}^{2}} = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left\{ \begin{matrix}
k_{p}\sqrt{\frac{1 + \frac{1}{\left( T_{i}\omega \right)^{2}}}{a^{2} + b^{2}}} = 1 \\
\tan\text{Δφ} = - \frac{\frac{a}{T_{i}\omega} + b}{a - \frac{b}{T_{i}\omega}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( 1 + \frac{1}{\left( T_{i}\omega \right)^{2}} \right) = a^{2} + b^{2} \\
\operatorname{a\bullet tan}\text{Δφ} - \frac{b}{T_{i}\omega}\tan\text{Δφ} = - \frac{a}{T_{i}\omega} - b \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( 1 + \frac{1}{\left( T_{i}\omega \right)^{2}} \right) = a^{2} + b^{2} \\
\operatorname{a\bullet tan}\text{Δφ} + b = \frac{1}{T_{i}\omega}\left( b\tan\text{Δφ} - a \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \frac{1}{\left( T_{i}\omega \right)^{2}}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \frac{1}{\left( \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \right)^{2}}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{\frac{\left( b\tan\text{Δφ} - a \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}}{\left( b\tan\text{Δφ} - a \right)^{2}}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( b\tan\text{Δφ} - a \right)^{2}}{\left( b\tan\text{Δφ} - a \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( b\tan\text{Δφ} - a \right)^{2}}{\left( a^{2} + b^{2} \right)\left\lbrack 1 + \left( \tan\text{Δφ} \right)^{2} \right\rbrack} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = \frac{\operatorname{a\bullet tan}\text{Δφ} + b}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
$$\frac{k_{p}}{T_{i}} = \frac{\operatorname{a\omega\bullet tan}\text{Δφ} + b\omega}{\sqrt{1 + \left( \tan{\Delta\varphi} \right)^{2}}}$$
$$\frac{k_{p}}{T_{i}} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}a\omega + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\text{bω}$$
$$\frac{k_{p}}{T_{i}} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{5} - 85\omega^{3} + \omega \right) + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right)$$
Liczymy ekstremum
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 1370\omega^{4} - 255\omega^{2} + 1 \right) + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 720\omega^{5} - 900\omega^{3} + 30\omega \right)$$
Dla Δϕ=60 ̊
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{\sqrt{3}}{2}\left( 1370\omega^{4} - 255\omega^{2} + 1 \right) + 15\left( 24\omega^{5} - 30\omega^{3} + \omega \right)$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 360\omega^{5} + 685{\sqrt{3}\omega}^{4} - 450\omega^{3} - 127,5\sqrt{3}\omega^{2} + 15\omega + \frac{\sqrt{3}}{2}$$
>> roots([360 685*sqrt(3) -450 -127.5*sqrt(3) 15 sqrt(3)/2])
ans =
-3.5951
0.5668
-0.3246
0.0953
-0.0381
$$\left\{ \begin{matrix}
k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{i}\omega = \frac{b\tan\text{Δφ} - a}{\operatorname{a\bullet tan}\text{Δφ} + b} \\
\end{matrix} \right.\ $$
Dla ω=0,0953
$$\left\{ \begin{matrix}
k_{p} = 1,172 \\
T_{i} = 14,734 \\
\end{matrix} \right.\ $$
Badania z regulatorem PID
Przykład:
Obiekt inercyjny piątego rzędu aproksymowany transmitancją zastępczą i regulator P
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
R(s) = kp
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G\left( s \right) = \frac{k}{\left( s + 1 \right)\left( 2s + 1 \right)\left( 3s + 1 \right)\left( 4s + 1 \right)\left( 5s + 1 \right)}$$
$$G\left( s \right) = \frac{1 \bullet e^{- \tau s}}{T_{z}s + 1}$$
$$G_{\text{uo}}\left( s \right) = \frac{k_{p}e^{- \tau s}}{T_{z}s + 1}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}e^{- \tau j\omega}}{T_{z}j\omega + 1}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( \cos{\tau\omega - j\sin\text{τω}} \right)}{1 + T_{z}\text{jω}} \bullet \frac{1 - T_{z}\text{jω}}{1 - T_{z}\text{jω}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( \cos{\tau\omega - T_{z}\omega\sin\text{τω} - j\sin\text{τω}} - T_{z}\text{jω}\cos\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}}$$
$$P_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( \cos\text{τω} - T_{z}\omega\sin\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}}$$
$$Q_{\text{uo}}\left( \text{jω} \right) = - \frac{k_{p}\left( \sin\text{τω} + T_{z}\omega\cos\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}}$$
$$M\left( \omega \right) = \frac{k_{p}}{\sqrt{1 + T_{z}^{2}\omega^{2}}}$$
$$tg\varphi = - \frac{T_{z}\omega\cos\text{τω} + \sin\text{τω}}{\cos\text{τω} - \operatorname{\omega sin}\text{τω}}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( \cos\text{τω} - T_{z}\omega\sin\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}} = - 1 \\
- \frac{k_{p}\left( \sin\text{τω} + T_{z}\omega\cos\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}} = 0 \\
\end{matrix} \right.\ $$
sinτω + Tzωcosτω = 0
Tzωcosτω = -sinτω
$$T_{z}\omega = \frac{\sin\text{τω}}{\cos\text{τω}}$$
Tzω = tanτω
tanτω − Tzω = 0
tan6ω − 15ω = 0
Równanie uwikłane, z rozwiązania cyfrowego ω=0,210733
$$\left\{ \begin{matrix}
\frac{k_{p}\left( \cos\text{τω} - T_{z}\omega\sin\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}} = - 1 \\
\omega = 0,210733 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - \frac{1 + T_{z}^{2}\omega^{2}}{\cos\text{τω} - T_{z}\omega\sin\text{τω}} \\
\omega = 0,210733 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\left( k_{p} \right)_{\text{kr}} = 4,0528 \\
\omega = 0,210733 \\
\end{matrix} \right.\ $$
Warunek: zapas modułu ΔL=6dB
ΔL = 20lgΔM = −6
$$\Delta M = 10^{- \frac{6}{20}}$$
ΔM = 0, 5
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}\left( \cos\text{τω} - T_{z}\omega\sin\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}} = - 1 + \Delta M \\
- \frac{k_{p}\left( \sin\text{τω} + T_{z}\omega\cos\text{τω} \right)}{1 + T_{z}^{2}\omega^{2}} = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = 2,0264 \\
\omega = 0,210733 \\
\end{matrix} \right.\ $$
Warunek: zapas fazy Δϕ=60 ̊
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{1 + T_{z}^{2}\omega^{2}}} = 1 \\
\tan\text{Δφ} = - \frac{T_{z}\omega\cos\text{τω} + \sin\text{τω}}{\cos\text{τω} - \operatorname{\omega sin}\text{τω}} \\
\end{matrix} \right.\ $$
tanΔφcosτω − ωtanΔφsinτω = −Tzωcosτω − sinτω
tanΔφcosτω + Tzωcosτω = ωtanΔφsinτω − sinτω
(tanΔφ+Tzω)cosτω = sinτω
$$\frac{\tan\text{Δφ} + T_{z}\omega}{T_{z}\omega\tan\text{Δφ} - 1} = \frac{\sin\text{τω}}{\cos\text{τω}}$$
$$\frac{\tan\text{Δφ} + T_{z}\omega}{T_{z}\omega\tan\text{Δφ} - 1} = \tan\text{τω}$$
Z rozwiązania cyfrowego ω=0,155
$$\left\{ \begin{matrix}
k_{p} = \sqrt{1 + T_{z}^{2}\omega^{2}} \\
\omega = 0,155 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = 2,530934 \\
\omega = 0,155 \\
\end{matrix} \right.\ $$
Stabilność – kryterium Hurwitza
Badanie stabilności układu regulacji na podstawie transmitancji operatorowej.
$$G\left( s \right) = \frac{k}{a_{n}s^{n} + a_{n - 1}s^{n - 1} + ...\ldots\ldots + a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0}}$$
Macierz Hurwitza
$$\Delta_{n} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{n - 1} & a_{n} & 0 \\
a_{n - 3} & a_{n - 2} & a_{n - 1} \\
a_{n - 5} & a_{n - 4} & a_{n - 3} \\
\end{matrix} \\
\begin{matrix}
a_{n - 7} & a_{n - 6} & a_{n - 5} \\
a_{n - 9} & a_{n - 8} & a_{n - 7} \\
\ldots & \ldots & \ldots \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{n} \\
\begin{matrix}
a_{n - 2} \\
a_{n - 4} \\
\begin{matrix}
a_{n - 6} \\
\ldots \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 & \ldots \\
\end{matrix} \\
\begin{matrix}
0 & \ldots \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{n - 1} & \ldots \\
\end{matrix} \\
\begin{matrix}
a_{n - 3} & \ldots \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{n - 5} & \ldots \\
\end{matrix} \\
\begin{matrix}
\ldots & \ldots \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
Warunek konieczny - wszystkie wyrazy równania charakterystycznego istnieją i są dodatnie
an > 0, an − 1 > 0, ...…… a3 > 0, a2 > 0 a1 > 0, a0 > 0
Warunek dostateczny – wszystkie podwyznaczniki wyznacznika głównego macierzy Hurwitza są większe od zera
Δn > 0, Δn − 1 > 0, ...…… Δ3 > 0, Δ2 > 0 Δ1 > 0
Jeżeli któryś ze współczynników równania charakterystycznego jest ujemny lub równy zero albo któryś z podwyznaczników jest ujemny lub równy zero to układ jest niestabilny.
Ponieważ Δn = a0Δn − 1 i Δ1 = an − 1, to niecelowe jest sprawdzanie dodatności tych wyznaczników. Konieczne jest sprawdzanie dodatności wyznaczników od Δ2 do Δn-1.
Jeżeli któryś z podwyznaczników jest równy zero to układ jest na granicy stabilności – oscylacje o stałej amplitudzie.
Kryterium Hurwitza nie podaje żadnych progów stabilności.
Przykład:
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$
a5 = 120, a4 = 274, a3 = 225, a2 = 85 a1 = 15, a0 = 1
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{4} & a_{5} & 0 \\
a_{2} & a_{3} & a_{4} \\
a_{0} & a_{1} & a_{2} \\
\end{matrix} \\
\begin{matrix}
0 & 0 & a_{0} \\
0 & 0 & 0 \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{5} \\
\begin{matrix}
a_{3} \\
a_{1} \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{4} \\
\end{matrix} \\
\begin{matrix}
a_{2} \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{0} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 \\
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
274 \\
\end{matrix} \\
\begin{matrix}
85 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
1 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{2} = \left| \begin{matrix}
274 & 120 \\
85 & 225 \\
\end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$
$$\Delta_{3} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} & \begin{matrix}
85 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = 274 \bullet 225 \bullet 85 + 1 \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 3279990$$
$$\Delta_{4} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
$$\Delta_{4} = 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| - 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
Δ4 = 274(225•85•15+15•120−225•225−15•274•15) − 120(85•85•15+120−85•225−274•15) = 38102400
Układ otwarty jest stabilny, wszystkie warunki są spełnione
Badanie granicy stabilności układu zamkniętego:
$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$
R(s) = kp
$$G_{z}\left( s \right) = \frac{k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}{1 + k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}$$
$$G_{z}\left( s \right) = \frac{k_{p}}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 + k_{p}}$$
a5 = 120, a4 = 274, a3 = 225, a2 = 85 a1 = 15, a0 = 1 + kp
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{4} & a_{5} & 0 \\
a_{2} & a_{3} & a_{4} \\
a_{0} & a_{1} & a_{2} \\
\end{matrix} \\
\begin{matrix}
0 & 0 & a_{0} \\
0 & 0 & 0 \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{5} \\
\begin{matrix}
a_{3} \\
a_{1} \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{4} \\
\end{matrix} \\
\begin{matrix}
a_{2} \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{0} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 + k_{p} \\
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
274 \\
\end{matrix} \\
\begin{matrix}
85 \\
\end{matrix} \\
1 + k_{p} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{2} = \left| \begin{matrix}
274 & 120 \\
85 & 225 \\
\end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$
$$\Delta_{3} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} & \begin{matrix}
85 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = 274 \bullet 225 \bullet 85 + \left( 1 + k_{p} \right) \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 5240250 + \left( 1 + k_{p} \right)32880 - 1126140 - 867000 = 3247110 + \left( 1 + k_{p} \right)32880$$
kp ≥ −97, 756
$$\Delta_{4} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 + k_{p} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 + k_{p} & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
$$\Delta_{4} = 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| - 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 + k_{p} & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
Δ4 = 274(225•85•15+15•120(1+kp)−225•225(1+kp)−15•274•15) − 120(85•85•15+120(1+kp)(1+kp)−85•225(1+kp)−274•15(1+kp)) = 274(286875+1800(1+kp)−50625(1+kp)−61650) − 120(108375+120(1+kp)(1+kp)−19125(1+kp)−4110(1+kp)) = 274(225225−48825(1+kp)) − 120(108375+120(1+kp)(1+kp)−23235(1+kp)) = 48706650 − 10589850(1+kp) − 14400(1+kp)(1+kp)
1 + kp = 4, 571 i 1 + kp = −734
Wzmocnienie krytyczne wynosi (kp)kr = 3, 571