DZIAŁANIA NA LOGARYTMACH – rozwiązanie zadań
Zadanie 1
(x + 3) − (x − 1) = 2 − 8
(x + 3) − (x − 1) = 16 − 8
1 x + 3 > 0
x > −3
2 x − 1 > 0
x > 1
$$\operatorname{}\frac{x + 3}{x - 1} = \operatorname{}\frac{16}{8}$$
funkcja roznowartosciowa
$$\frac{x + 3}{x - 1} = 2$$
2x − 2 = x + 3
2x − x = 5
x = 5
zestawienie zalozen
D : x ∈ (1, +∞)
log(3x+4) + log(x+8) = 2
log(3x+4)(x+8) = 2
1 3x + 4 > 0
3x > −4
$$x > - \frac{4}{3}$$
2 x + 8 > 0
x > −8
log(3x2 + 24x + 4x + 32)=log100
funkcja roznowartosciowa
3x2 + 24x + 4x + 32 = 100
3x2 + 28x + 32 = 100
zestawienie zalozen
$$x \in ( - \frac{4}{3}, + \infty)$$
x − x3 + 2 = 0
x − 3x + 2 = 0
1 x > 0
x = t
t2 − 3t + 2 = 0
=9 − 4 * 2 = 1
$$\sqrt{} = 1$$
t1 = 2
x = 2
funkcja roznowartosciowa
x = 9
x = 9
t2 = 1
x = 1
funkcja roznowartosciowa
x = 3
x = 3
$4 - \log x = 3\sqrt{\log x}$
$$- \log x - 3\sqrt{\log x} + 4 = 0$$
$$\log x + 3\sqrt{\log x} - 4 = 0$$
1 x > 0
$$\mathbf{2}\text{\ \ \ }\sqrt{\log x} > 0$$
3 x ≠ 1
$$\sqrt{\log x} = t$$
t ≥ 0
t2 + 3t − 4 = 0
=9 + 16 = 25
$$\sqrt{} = 5$$
t1 = −4
$$\sqrt{\log x} = - 4$$
−4 nie spelnia zalozenia
t2 = 1
$$\sqrt{\log x} = 1$$
logx = log10
x = 10
t ≥ 0
logx ≥ 0
logx ≥ log1
x ≥ 1
zestawienie zalozen
D : x ∈ ⟨1 , +∞)
x + x + x = 7
1 x > 0
$$\frac{\operatorname{}x}{4} + \frac{\operatorname{}x}{2} + \operatorname{}x = 7\ \ |*4$$
x + 2x + 4x = 28
7x = 28 |:7
x = 4
x = 16
x = 16
xlogx + 10x−logx = 11
1 x > 0
$$x^{\log x} + \frac{10}{x^{\log x}} = 11$$
xlogx = t
$$t + \frac{10}{t} - 11 = 0$$
t2 + 10 − 11t = 0
t2 − 11t + 10 = 0
=121 − 40 = 81
$$\sqrt{} = 9$$
$$t_{1} = \frac{11 - 9}{2} = 1$$
xlogx = 1
xlogx = x0
logx = 0
logx = log1
x = 1
$$t_{2} = \frac{11 + 9}{2} = 10$$
xlogx = 10
logxlogx = log10
logx * logx = 1
x = 1
logx = 1 ∨ logx = −1
$$\log x = \log 10\ \ \ \vee \ \ \ \log x = \log\frac{1}{10}$$
$$x = 10\ \ \ \vee \ \ \ x = \frac{1}{10}$$
$2^{\frac{3}{\operatorname{}x}} = \frac{1}{64}$
x > 0
$$2^{\frac{3}{\operatorname{}x}} = 2^{- 6}$$
funkcja roznowartosciowa
$$\frac{3}{\operatorname{}x} = - 6\ \ \ |*\operatorname{}x$$
3 = −6x | : ( − 6)
$$- \frac{1}{2} = \operatorname{}x$$
$$\operatorname{}x = - \frac{1}{2}$$
$$\operatorname{}x = \operatorname{}3^{- \frac{1}{2}}$$
$$x = 3^{- \frac{1}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
3x > 1
3x > 1 | : 3
$$x > \frac{1}{3}$$
1.
(2x−1) ∈ (0,1)
0 < 2x − 1 < 1
1 < 2x < 2 | : 2
$$\frac{1}{2} < x < 1$$
$$x \in \left( \frac{1}{2},1 \right)$$
2.
(2x−1) ∈ (1,+∞)
2x − 1 > 1
2x > 2
x > 1
x ∈ (1, +∞)
$\left\{ \begin{matrix} \operatorname{}2 + \operatorname{}2 = - \frac{3}{2} \\ \operatorname{}x + \operatorname{}y = - 3 \\ \end{matrix} \right.\ $
1 x > 0
2 y > 0
3 x ≠ 1
4 y ≠ 1
xy = 2−3
$$\operatorname{}\text{xy} = \operatorname{}\frac{1}{8}$$
funkcja roznowartosciowa
$$xy = \frac{1}{8}$$
$$y = \frac{1}{8x}$$
$$\operatorname{}2 + \operatorname{}2 = - \frac{3}{2}$$
$$\operatorname{}2 = \frac{\operatorname{}2}{\operatorname{}\frac{1}{8x}} = \frac{\operatorname{}2}{\underset{0}{} - \operatorname{}{8x}} = \frac{\operatorname{}2}{- \operatorname{}{8x}} = \frac{- \operatorname{}2}{\operatorname{}8 + \underset{1}{}} = \frac{- \operatorname{}2}{\operatorname{}8 + 1} = \frac{\operatorname{}2}{\operatorname{}{2^{3} + 1}} = \frac{- \operatorname{}2}{3\operatorname{}2 + 1}$$
$$\operatorname{}2 - \frac{\operatorname{}2}{3\operatorname{}2 + 1} = - \frac{3}{2}$$
2 = t
$$t - \frac{t}{3t + 1} = - \frac{3}{2}\ \ \ |*(3t + 1)$$
$$3t^{2} + t - t = - \frac{3}{2}\left( 3t + 1 \right)$$
$$3t^{2} + \frac{9}{2}t + \frac{3}{2} = 0\ \ |*2$$
6t2 + 9t + 3 = 0 | : 3
2t2 + 3t + 1 = 0
=1
$$\sqrt{} = \sqrt{1} = 1$$
t1 = −1
2 = −1
$$\operatorname{}2 = \operatorname{}\frac{1}{x}$$
$$2 = \frac{1}{x}\ \ |*x$$
2x = 1 | : 2
$$x_{1} = \frac{1}{2}$$
$$t_{2} = - \frac{1}{2}$$
$$\operatorname{}2 = - \frac{1}{2}$$
$$\operatorname{}2 = \operatorname{}{- \frac{1}{2}}$$
$$x^{- \frac{1}{2}} = 2$$
$$\frac{1}{\sqrt{x}} = 2$$
$$\frac{1}{x} = 4\ \ |*x$$
4x = 1
$$x_{2} = \frac{1}{4}$$
$$y = \frac{1}{8x}$$
$$y_{1} = \frac{1}{8x_{1}} = \frac{1}{8*\frac{1}{2}} = \frac{1}{4}$$
$$y_{2} = \frac{1}{8x_{2}} = \frac{1}{8*\frac{1}{4}} = \frac{1}{2}$$
$$\left\{ \begin{matrix}
x_{1} = \frac{1}{2} \\
y_{1} = \frac{1}{4} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
x_{2} = \frac{1}{4} \\
y_{2} = \frac{1}{2} \\
\end{matrix} \right.\ $$
Zadanie 2
17240 = 17402 = 402 = 800
$125^{\operatorname{}16} = 25^{\frac{3}{2}\operatorname{}16} = 25^{\log 25*16\frac{3}{2}} = 16\frac{3}{2} = 4^{3} = 64$
$\operatorname{}5*\operatorname{}27 = \frac{1}{\operatorname{}9}*\operatorname{}27 = \frac{\operatorname{}27}{\operatorname{}9} = \frac{\operatorname{}3^{3}}{\operatorname{}3^{2}} = \frac{3\operatorname{}3}{2\operatorname{}3} = \frac{\operatorname{}3}{4\operatorname{}3} = \frac{1}{4}$
Zadanie 3
$\operatorname{}a = \sqrt{5}$
$$\operatorname{}\frac{a}{\sqrt{b}} = \operatorname{}\frac{a}{\sqrt{b}} = \frac{\operatorname{}\frac{a}{\sqrt{b}}}{\operatorname{}{\sqrt{a}*\sqrt{b}}} = \frac{\operatorname{}a - \operatorname{}\sqrt{b}}{\operatorname{}\sqrt{a} + \operatorname{}\sqrt{b}} = \frac{\operatorname{}a - \operatorname{}{({b)}^{\frac{1}{2}}}}{\operatorname{}{(a)}^{\frac{1}{2}} + \operatorname{}{(b)}^{\frac{1}{2}}} = \frac{\operatorname{}a - \frac{1}{2}\operatorname{}b}{\frac{1}{2}\operatorname{}a + \frac{1}{2}\operatorname{}b} = \frac{\sqrt{5} - \frac{1}{2}}{\frac{1}{2}\sqrt{5} + \frac{1}{2}}$$
xx = a2x
a ∈ (0,1) ∪ (1, +∞)
xx = a2x
x * x = a2 + x
x = 2a + x
a = 1
x = 2 + x
x − x − 2 = 0
x = t
t2 − t − 2 = 0
=1 + 4 * 2 = 9
$$\sqrt{} = 3$$
t1 = 2
x = 2
x = a2
funkcja roznowartosciowa
x = a2
zalozenie x > 0
t2 = −1
x = −1
x = x−1
funkcja roznowartosciowa
$$x = \frac{1}{a}$$
${(\sqrt{x})}^{\operatorname{}{x - 1}} = 5$
$$x^{\frac{1}{2}(\operatorname{}{x - 1)}} = 5$$
$$\operatorname{}x^{\frac{1}{2}(\operatorname{}{x - 1)}} = \operatorname{}5$$
$$\left( \frac{1}{2}\operatorname{}x - \frac{1}{2} \right)\operatorname{}x = 1$$
x = t
$$\left( \frac{1}{2}t - \frac{1}{2} \right)t = 1$$
$$\frac{1}{2}t^{2} - \frac{1}{2}t - 1 = 0\ \ \ |*2$$
t2 − t − 2 = 0
=1 + 8 = 9
$$\sqrt{} = 3$$
t1 = −1
x = −1
x = 5−1
$$x = \frac{1}{5}$$
t2 = 2
x = 2
x = 52
x = 25
2 * 2 = 2
$$\operatorname{}2 = \frac{\operatorname{}2}{\operatorname{}{2x}} = \frac{\operatorname{}2}{\operatorname{}2 + \operatorname{}x} = \frac{\operatorname{}2}{\operatorname{}2 + 1}$$
$$\operatorname{}2 = \frac{\operatorname{}2}{\operatorname{}{4x}} = \frac{\operatorname{}2}{\operatorname{}4 + \operatorname{}x} = \frac{\operatorname{}2}{2\operatorname{2}{+ 1}}$$
2 = t
$$t*\frac{t}{t + 1} = \frac{t}{2t + 1}$$
$$\frac{t^{2}}{t + 1} = \frac{t}{2t + 1}$$
2t3 + t2 = t2 + t
2t3 = t
2t3 − t = 0
t(2t2−1) = 0
t = 0
2t2 = 1
$$t^{2} = \frac{1}{2}$$
$$t = \frac{\sqrt{2}}{2}\ \ \ \ \vee \ \ \ \ t = - \frac{\sqrt{2}}{2}$$
2 = 0
2 = x0
2 = x0
2 = 1
rownanie sprzeczne
$$\operatorname{}2 = - \frac{\sqrt{2}}{2}$$
$$\operatorname{}2 = \operatorname{}x^{- \frac{\sqrt{2}}{2}}$$
$$2 = x^{- \frac{\sqrt{2}}{2}}\ \ |* - \frac{2}{\sqrt{2}}$$
$$2^{- \frac{2}{\sqrt{2}}} = x$$
x = 2
$$\operatorname{}2 = \frac{\sqrt{2}}{2}$$
$$2 = x^{\frac{\sqrt{2}}{2}}$$
$$x = 2^{- \sqrt{2}}\ \ \vee \ \ \ x = 2^{\sqrt{2}}$$
(2x + 1) > 1
1 2x + 1 > 0
2x > −1
$$x > - \frac{1}{2}$$
1.
x ∈ (0,1)
funkcja malejaca
(2x + 1)<1
(2x + 1) < x
2x + 1 < x
x < −1
x ∈ ⌀
2.
x ∈ (1,+∞)
(2x+1) > 1
(2x+1) > x
2x + 1 > x
x > −1
x ∈ (1,+∞)
suma rozwiazan
Odpowiedz : x ∈ (1, +∞)
27 = a 16 = ?
27 = a
33 = a
$$\operatorname{}16 = \frac{\operatorname{}16}{\operatorname{}6} = \frac{\operatorname{}4^{2}}{\operatorname{}{2*3}} = \frac{\operatorname{}2^{4}}{\operatorname{}{2*3}} = \frac{\operatorname{}2^{4}}{\operatorname{}2 + \operatorname{}3} = \frac{4\operatorname{}2}{\operatorname{}2 + \operatorname{}3}$$
$$\operatorname{}27 = \frac{\operatorname{}27}{\operatorname{}12} = \frac{3\operatorname{}3}{\underset{1}{} + \operatorname{}2} = \frac{3\operatorname{}3}{1 + \operatorname{}2}$$
a = 4
$$\log\text{ab} = \frac{1}{\operatorname{}a}$$
$$\frac{1}{\operatorname{}\text{ab}} = 4$$
$$\frac{1}{\underset{1}{} + \operatorname{}b} = \frac{1}{1 + \operatorname{}b} = 4$$
$$\operatorname{}\frac{\sqrt[3]{a}}{\sqrt{b}} = \operatorname{}\sqrt[3]{a} - \operatorname{}\sqrt{b} = \frac{1}{3}\operatorname{}a - \frac{1}{2}\operatorname{}b = \frac{4}{3} - \frac{1}{2}\operatorname{}b = \frac{4}{3} - \frac{1}{2}*\frac{1}{\operatorname{}\text{ab}} = \frac{4}{3} - \frac{1}{2\operatorname{}\text{ab}} = \frac{4}{3} - \frac{1}{2(\operatorname{}a + \underset{1}{}} = \frac{4}{3} - \frac{1}{2(\operatorname{}{a + 1)}} = \frac{4}{3} - \frac{1}{2( - \frac{4}{3} + 1)} = \frac{4}{3} + \frac{3}{2} = \frac{17}{6}$$
$$\frac{1}{4} = 1 + \operatorname{}b$$
$$- \frac{3}{4} = \operatorname{}b$$
$$\operatorname{}{a =} - \frac{4}{3}$$
32 − x = 81x
1 x > 0
32 * 3−x = 81x
$$9*\frac{1}{3^{\operatorname{}x}} = 81x\ \ \ |\ :9$$
$$\frac{1}{3^{\operatorname{}x}} = 9x$$
$$\frac{1}{x} = 9x\ \ \ \ |*x$$
9x2 = 1 | : 9
$$x^{2} = \frac{1}{9}$$
$$x = \frac{1}{3}\ \ \ \ \vee \ \ \ x = - \frac{1}{3} \notin D$$
4logx = 0, 5 * 101 − log2, 5
4logx = 0, 5 * 10 * 10−log2, 5
$$4^{\log x} = 5*\frac{1}{10^{\log{2,5}}}$$
$$4^{\log x} = \frac{5}{2,5}$$
4logx = 2
22logx = 21
funkcja roznowartosciowa
2logx = 1 | : 2
$$\log x = \frac{1}{2}$$
$$\log x = \log 10^{\frac{1}{2}}$$
$$x = \sqrt{10}$$
Zadanie 4
f(x) = (x3 + 4x2 − x − 4)
1 x2 − 3 > 0
x2 > 3
$$\left( x - \sqrt{3} \right)\left( x + \sqrt{3} \right) > 0$$
$$x = \sqrt{3}\ \ \ \ \vee \ \ \ \ x = - \sqrt{3}$$
$$x \in \left( - \infty, - \sqrt{3} \right) \cup (\sqrt{3}, + \infty)$$
2 x2 − 3 ≠ 1
x2 ≠ 4
x ≠ 2 ∨ x ≠ −2
3 x3 + 4x2 − x − 4 > 0
(x−1)(x2+5x+4) > 0
x = 1
x2 + 5x + 4 = 0
=25 − 16 = 9
$$\sqrt{} = 3$$
$$x_{1} = \frac{- 5 - 3}{2} = - 4$$
$$x_{2} = \frac{- 5 + 3}{3} = - 1$$
x ∈ (−4,−1) ∪ (1,+∞)
zestawienie zalozen
$$x \in \left( - 4, - 2 \right) \cup \left( - 2, - \sqrt{3} \right) \cup \left( \sqrt{3},2 \right) \cup (2, + \infty)$$
Zadanie 5
(x − 1) + (x−1) − 2 = 0
(mniejsze od 3)
1 x − 1 > 0
x > 1
2 m ≠ 1
3 m > 1
zal. (x−1) = t
t2 + t − 2 = 0
=1 + 4 * 2 = 9
$$\sqrt{} = 3$$
$$t_{1} = \frac{- 1 + 3}{2} = 1$$
(x−1) = 1
(x−1) = m
x − 1 = m
x = m + 1
m + 1 < 3
m < 2
$$t_{2} = \frac{- 1 - 3}{2} = - 2$$
(x−1) = −2
(x − 1) = m−2
$$x - 1 = \frac{1}{m^{2}}$$
$$x = \frac{1}{m^{2}} + 1$$
$$\frac{1}{m^{2}} + 1 < 3$$
$$\frac{1}{m^{2}} < 2$$
1 < 2m2
$$\frac{1}{2} < m^{2}$$
$$m^{2} > \frac{1}{2}$$
2m2 > 1
2m2 − 1 > 0
$$m^{2} - \frac{1}{2} > 0$$
$$\left( m - \frac{\sqrt{2}}{2} \right)\left( m + \frac{\sqrt{2}}{2} \right) > 0$$
$$m_{0_{1}} = \frac{\sqrt{2}}{2}$$
$$m_{0_{2}} = - \frac{\sqrt{2}}{2}$$
$$m \in \left( - \infty, - \frac{\sqrt{2}}{2} \right) \cup \left( \frac{\sqrt{2}}{2}, + \infty \right)$$
zestawienie z dziedzina
m ∈ (1,+∞)
suma rozwiazan
$$m \in \left( - \infty, - 2 \right) \cup \left( - 2, - \frac{\sqrt{2}}{2} \right) \cup \left( \frac{\sqrt{2}}{2}, + \infty \right)$$