Mostek jest równoległym połączeniem co najmniej dwóch dzielników napięcia. Napięciem wyjściowym mostka jest napięcie pomiędzy punktami wyjściowymi dzielników napięcia (tak jak to zilustrowano schematycznie na Rys. 1 po prawej stronie).
Jedną z największych zalet układu mostkowego jest to, że może on zostać doprowadzony do punktu równowagi - napięcie wyjściowe mostka zrównoważonego jest równe zero, co jest często wykorzystywane w mostkach pomiarowych. Obecnie mostki pomiarowe są coraz rzadziej wykorzystywane z uwagi na nieustający rozwój stosunkowo tanich i coraz dokładniejszych wszelkiego rodzaju mierników cyfrowych. Niemniej jednak, w powszechnym użyciu są również mostki niezrównoważone pracujące nie tylko w punkcie równowagi.
Układy mostkowe mogą być zbudowane również elementów nieliniowych, takich jak np. diody prostownicze. Zasilenie mostka prostowniczego, zwanego powszechnie mostkiem Graetza, napięciem przemiennym powoduje wyprostowanie takiego napięcia. Mostki prostownicze mogą być stosowane do prostowania napięcia trójfazowego, a nawet wielofazowego.
Mostek Wheatstone'a [edytuj]
Rys. 2. Mostek Wheatstone'a
Zasada mostka pracującego w punkcie równowagi jest wykorzystana w mostku Wheatstone'a (Rys. 2). Warunkiem równowagi dla takiego mostka jest:
Zazwyczaj, stosunek oporników R3 do R4 może być ustawiany na jedną z następujących wartości: 0,01; 0,1; 1; 10; itd., co umożliwia zmianę zakresu mostka. Wartość rezystancji opornika R2 może być płynnie regulowana tak, aby osiągnąć stan równowagi mostka. Zatem znając wartości rezystancji R2, R3 i R4 można dokładnie wyznaczyć nieznaną wartość rezystancji Rx.
Czułość mostka Sm zależy od napięcia wejściowego (zasilającego) Uwe oraz zmiany wartości rezystancji R2:
Rozdzielczość pomiaru dR zależy od: czułości Su urządzenia pomiarowego wykrywającego napięcie wyjściowe, stosunku rezystancji wewnętrznych mostka, rezystancji wewnętrznej Ru urządzenia pomiarowego, całkowitej rezystancji Rm mostka (rezystancji widzianej z zacisków wejściowych), czułości mostka oraz wartości napięcia zasilającego (wejściowego):
Z powyższego równania wynika, że rozdzielczość jest tym większa im większa jest czułość urządzenia pomiarowego. Rozdzielczość rośnie również ze wzrostem napięcia zasilania, jednak wartość napięcia jest ograniczona od góry z uwagi na dopuszczalną moc wydzielaną na opornikach mostka. Jeśli moc ta będzie zbyt duża dojdzie do trwałego uszkodzenia.
W przypadku pomiarów bardzo małych wartości rezystancji (w praktyce poniżej 1 Ω) nie można pominąć wartości rezystancji przewodów doprowadzających, którymi dołączony jest rezystor Rx, jak również i ewentualnych sił elektromotorycznych powstających z uwagi na zjawisko Seebecka. Zjawisko to można stosunkowo łatwo wyeliminować poprzez wykonanie tego samego pomiaru dla dodatniego i ujemnego kierunku zasilania - wartość średnia z obydwu pomiarów będzie wartością poprawną. Niemniej jednak, nie można w ten sposób wyeliminować wpływu rezystancji przewodów doprowadzających.
Dlatego też, do pomiaru małych rezystancji używa się opisanego poniżej mostka Kelvina.
Praktyczne zastosowanie ma również techniczny mostek Wheatstone’a, który jest co prawda mniej dokładny, ale w zamian mniejszy i wygodniejszy w użyciu. Mniejsza dokładność w porównaniu z mostkiem laboratoryjnym jest wynikiem mniej czułego (za to bardziej odpornego na wstrząsy) galwanometru, a także z powodu wprowadzeniu rezystora drutowego ze stykiem ślizgowym, który służy do płynnego równoważenia układu. W niektórych rozwiązaniach rolę galwanometru spełnia układ dwóch diod luminescencyjnych: czerwonej i zielonej. Wartość mierzonego oporu odczytuje się bezpośrednio z odpowiednio wyskalowanego rezystora regulującego. Jeśli diody migają naprzemiennie, wówczas ustawiona jest poprawna wartość rezystancji (mostek jest w równowadze). Jeśli którakolwiek z diod świeci ciągle, to ustawiona wartość jest zbyt mała (dioda czerwona) lub zbyt duża (dioda zielona).
Galwanometr to bardzo czuły miernik magnetoelektryczny. Służy on do mierzenia niewielkich wartości natężenia prądu elektrycznego (wykrywa nawet tysięczne części ampera), może też służyć do sygnalizacji stanu równowagi mostka elektrycznego.
Rozróżnia się kilka rodzajów galwanometrów, między innymi ze względu na budowę wewnętrzną - ze stałym uzwojeniem i ruchomym magnesem, ze stałym magnesem i ruchomym uzwojeniem, oraz ze względu na sposób wskazywania - galwanometr ze wskazówką, galwanometr zwierciadlany, galwanometr z wbudowanym źródłem światła.
Galwanometr stosowany był powszechnie w precycyjnych przyrządach pomiarowych w XX w., później wyparty został przez cyfrowe metody pomiaru. Na zdjęciu ustrój pomiarowy klasycznego galwanometru ze stałym magnesem i ruchomą cewką, ze wskazówką.
Budowa i działanie galwanometru
Weźmy cienką prostokątną ramkę, zawieszoną na nitce pomiędzy magnesami (N i S). Dodatkowo w ramkę jest wsunięty rdzeń, dzięki któremu uzyskuje się niemal radialny rozkład natężenia pola magnetycznego. Na ramkę działają siły pochodzące od pola magnetyczego (moment obrotowy ramki), oraz siła pochodząca od nici podtrzymującej ramkę (moment skręcający pochodzący od stabilności nici). Oba momenty częściowo się równoważą, dlatego też, gdy przez ramkę przepłynie prąd, to ramka wychyli się ze swego położenia równowagi do nowego położenia równowagi. Kąt wychylenia ramki jest proporcjonalny do prądu płynącego przez ramkę. Jeśli do ramki przypniemy wskazówkę lub lekkie zwierciadło, będziemy mogli obserwować wychylenie ramki, a więc i natężenie prądu płynącego przez ramkę galwanometru.
Ponieważ galwanometr jest urządzeniem bardzo czułym, nie możemy go podpiąć do układu bezpośrednio, wymagane jest zabezpieczenie.
Rezystywność (rezystancja właściwa) to miara oporu z jakim materiał przeciwstawia się przepływowi prądu elektrycznego.
Rezystywność jest zazwyczaj oznaczana jako ρ (mała grecka litera rho).
Jednostką rezystywności w układzie SI jest om*metr (1 Ωm).
Odwrotność rezystywności to konduktywność.
Rezystywność materiału wyznaczyć można znając wymiary geometryczne i rezystancję jednorodnego bloku danego materiału:
,
gdzie: R - rezystancja, S - pole przekroju poprzecznego elementu, l - długość elementu.
W ogólności rezystywność metali wzrasta wraz z temperaturą, a rezystywność półprzewodników zmniejsza się przy wzroście temperatury.
Rezystywność niektórych materiałów w specyficznych warunkach znika całkowicie; zjawisko to nazywamy nadprzewodnictwem.
Tabela rezystywności niektórych materiałów (w temp. 20 stopni Celsjusza)
Amperomierz - przyrząd pomiarowy służący do pomiaru natężenia prądu elektrycznego. W zależności od zakresu amperomierza używane są też nazwy: kiloamperomierz, miliamperomierz, mikroamperomierz.
Pomiaru natężenia prądu dokonuje się poprzez oddziaływanie przewodnika z prądem i pola magnetycznego budując następujące rodzaje amperomierzy:
magnetoelektryczny -
elektromagnetyczny -
elektrodynamiczny -
indukcyjny -
Stosowane są też amperomierze cieplne i termoelektryczne wykorzystujące efekt nagrzewania się przewodu, w którym płynie prąd. Amperomierze cieplne stosuje się w obwodach wielkiej częstotliwości gdzie indukcyjność cewki amperomierza magnetycznego wprowadzałaby duże zmiany w obwodzie.
Amperomierze mierząc prąd zmienny w zależności od typu amperomierza mierzą wartość średnią prądu (magnetoelektryczny) lub wartość skuteczną (elektrodynamiczne, elektromagnetyczne, indukcyjne, cieple i termoelektryczne).
Przy pomiarach prądu stałego, dla zwiększenia zakresu pomiarowego cewkę ustroju łączy się równolegle z bocznikiem, przez który płynie część prądu. Wówczas odchylenie organu ruchomego mikroamperomierza jest proporcjonalne do prądu płynącego przez cały układ miernika. Współczynnik proporcjonalności pozwalający wyznaczyć rzeczywistą wartość prądu odpowiada, z pewną dokładnością, wartości stosunku rezystancji ustroju do rezystancji wewnętrznej całego miernika, wynikającej z równoległego połączenia rezystancji ustroju oraz bocznika. Do pomiaru dużych prądów stałych stosuje się również przekładniki prądu stałego tz. transduktory. Ze względu na wyższe koszty rzadko stosowane.
Do rozszerzenia zakresu pomiarowego amperomierza przy pomiarach prądu przemiennego wykorzystuje się układ amperomierza z przekładnikiem prądowym.
Amperomierz jest włączany szeregowo w obwód elektryczny. Idealny amperomierz posiada nieskończenie małą rezystancję wewnętrzną. W amperomierzach realizowalnych fizycznie wartość rezystancji wewnętrznej jest różna od zera. W związku z tym występuje na nich spadek napięcia mający wpływ na dokładność wyniku dokonanego pomiaru. Rezystancję wewnętrzną amperomierza można pominąć w pomiarach technicznych, przy zachowaniu warunków znamionowych pomiaru.
Prąd elektryczny – uporządkowany (skierowany) ruch ładunków elektrycznych.
Wielkością opisującą prąd elektryczny jest natężenie prądu elektrycznego I, które definiuje się jako stosunek ładunku elektrycznego q, który przepływa przez poprzeczny przekrój przewodnika, do czasu t przepływu tego ładunku:
lub
Jednostką natężenia prądu elektrycznego w układzie SI jest amper [A].
Natężenie prądu I można wyrazić też przez liczbę ładunków przepływających przez powierzchnię S, mających prędkość v
gdzie: n - koncentracja nośników prądu wyrażona przez ich liczbę na jednostkę objętości (poruszających się w tym samym kierunku), q - ładunek każdego z nośników, v - składowe prędkości nośników w kierunku prostopadłym do powierzchni S, przez którą płynie prąd o natężeniu I.
Bardzo często określenie prąd elektryczny używa się zamiennie z natężeniem prądu elektrycznego.
W ośrodkach ciągłych prąd elektryczny opisuje się podając gęstość prądu opisujący przepływ ładunku przez jednostkową powierzchnię. W odróżnieniu od natężenia prądu, które jest skalarem i nie jest przypisana do punktu przestrzeni, gęstość prądu jest wektorem, a rozkład przestrzenny gęstości prądu nazywa się polem gęstości prądu.
Ruch ładunku jest wywołany ruchem cząstek (lub pseudocząstek) obdarzonych ładunkiem, zwanych nośnikami prądu. Nośnikami prądu elektrycznego mogą być elektrony, jony bądź dziury, czyli puste miejsca po elektronach. W metalach swobodnie przemieszczają się jedynie elektrony, dlatego prąd elektryczny w metalach jest ruchem elektronów przewodnictwa. W półprzewodnikach nośnikami prądu są elektrony i dziury. W rozrzedzonych gazach nośnikami ładunku elektrycznego są elektrony i jony.
Woltomierz jest to przyrząd pomiarowy za pomocą którego mierzy się napięcie elektryczne (jednostka napięcia wolt).
Polski woltomierz laboratoryjny magnetoelektryczny typu LM-3
Jest włączany równolegle do obwodu elektrycznego. Idealny woltomierz posiada nieskończenie dużą rezystancję wewnętrzną. W związku z tym oczekuje się pomijalnie małego upływu prądu przez cewkę pomiarową.
Obwody, w których dokonujemy pomiaru napięcia mogą mieć różną konfigurację i parametry, które pod wpływem włączenia woltomierza do obwodu ulec mogą zmianie, obarczając wynik pomiaru pewnym błędem - gdyż woltomierz zasilanie (moc) czerpie najczęściej z układu. Zmiany te będną tym mniejsze im mniejsza będzie moc (tym samym natężenie) pobierana przez woltomierz:
Dlatego też idealny woltomierz obdarzony jed resyztancją Rv dążącą do nieskończoności (wówczas prąd Iv pobierany z obwodu dąży do zera - tym samym jak wynika z powyższego równania pobierana z układu moc jest minimalna).
Pomimo wszystko nie możemy otrzymać wartości rezystancji dążącej do nieskończoności i każde wyniki pomiaru napięcia woltomierzem obdarzone są błędem metody. Poprawienie wyników jest konieczne gdy błąd metody jest nie mniejszy niż 0,1 wartości błędu granicznego woltomierza. Do oceny konieczności zastosowania poprawki stosuje się porównanie względnego błędu granicznego woltomierza ze względnym błędem systematycznym wyrażonym zależnością:
gdzie
Ro - rezystancja obwodu
Rv - rezystancja woltomierza
Woltomierze buduje się jako mierniki:
magnetoelektryczne
elektromagnetyczne
elektrodynamiczne
elektrostatyczne
cyfrowe
Woltomierz magnetoelektryczny służy do pomiaru napięć stałych. Po zastosowaniu układu prostowniczego może mierzyć również napięcia przemienne. Zasada działania tego woltomierza polega na oddziaływaniu pola magnetycznego, wytworzonego przez prąd płynący przez cewkę, nawiniętą na część ruchomą miernika, na stałe pole magnetyczne, w którym znajduje się cewka.
Woltomierz elektromagnetyczny służy do pomiaru napięć przemiennych. Ze względu na prostą budowę, a przez to niskie koszty produkcji, jest to najczęściej stosowany typ miernika, zwłaszcza w pomiarach technicznych. Działa na zasadzie oddziaływania pola elektromagnetycznego nieruchomej cewki na rdzeń ferromagnetyczny stanowiący ruchomą część ustroju pomiarowego.
Woltomierz elektrodynamiczny ma zastosowanie przy pomiarach napięć stałych i przemiennych. Ma bardziej złożoną budowę niż woltomierz magnetoelektryczny i elektromagnetyczny, przez co jest droższy i najrzadziej stosowany. Posiada dwie cewki, ruchomą i nieruchomą, które połączone są szeregowo. Moment pomiarowy powstaje na skutek wzajemnego oddziaływania dwóch cewek (stałej i ruchomej), przez które przepływa prąd.
Do rozszerzania zakresu pomiarowego woltomierzy magnetoelektrycznych, elektromagnetycznych i elektrodynamicznych stosuje się dodatkowe oporniki łączone szeregowo z ustrojem miernika, nazywane posobnikami. Często posobniki zabudowane są w jednej obudowie z ustrojem woltomierza, który posiada wyprowadzony przełącznik zakresów lub kilka zacisków o oznaczonych zakresach. Do pomiarów technicznych najczęściej stosuje się woltomierze o jednym zakresie pomiarowym z posobnikiem dobranym fabrycznie i wbudowanym w miernik. Posobniki stosuje się przy pomiarach napięcia stałego i przemiennego. Przy pomiarach napięć przemiennych, posobniki stosuje się do pomiaru napięć nie przekraczających 750 V (600 V). Przy pomiarach wyższych napięć przemiennych stosuje się przekładniki napięciowe.
Woltomierz elektrostatyczny stosuje się najczęściej jako miernik laboratoryjny do pomiaru wysokich napięć. Może on mierzyć napięcia o szerokim zakresie częstotliwości i nadaje się do pomiarów napięcia stałego i przemiennego. Jest mało wrażliwy na odkształcenia sinusoidy napięcia przemiennego. Zasada działania polega na wzajemnym oddziaływaniu ładunków elektrostatycznych zgromadzonych na elektrodach ustroju pomiarowego miernika.