sciaga modelowanie

Zwarty koniec linii
i1(k) = Gfu1(k) - Gfu2(k-m) - i2(k-m)
u2(k) = u2(k-m) = 0
i1(k) = Gfu1(k) - i2(k-m)
i2(k) = - Gfu1(k) - i1(k-m)
i2(k-m) = - Gfu1(k-2m) - i1(k-2m)
i1(k) = Gfu1(k) + Gfu1(k-2m) + i1(k-2m)
Otwarty koniec linii
i1(k) = Gfu1(k) - Gfu2(k-m) - i2(k-m)
i2(k) = i2(k-m) = 0
i1(k) = Gfu1(k) - Gfu2(k-m)
i2(k) = Gfu2(k) - Gfu1(k-m) - i1(k-m) = 0
Gfu2(k) = Gfu1(k-m) + i1(k-m)
Gfu2(k-m) = Gfu1(k-2m) + i1(k-2m)
i1(k) = Gfu1(k) - Gfu1(k-2m) - i1(k-2m)


RL niejawna metoda Eulera
u(k) = uR(k) + uL(k)
uR(k) = $\frac{1}{G_{R}}i\left( k \right)$
uL(k) = $\frac{1}{G_{L}}\left( i\left( k \right) - j_{L}\left( k - 1 \right) \right)$
u(k) = $\frac{1}{G_{R}}i\left( k \right)$ + $\frac{1}{G_{L}}\left( i\left( k \right) - j_{L}\left( k - 1 \right) \right)$
u(k) = $\frac{1}{G_{R}}i\left( k \right)$ + $\frac{1}{G_{L}}i\left( k \right)$$\frac{1}{G_{L}}j_{L}\left( k - 1 \right)$
u(k) = $\frac{1}{G_{R}G_{L}}i\left( k \right)$$\frac{1}{G_{L}}j_{L}\left( k - 1 \right)$
i(k) = GRGLu(k) + GRjL(k−1)
G = $\frac{G_{R}R_{L}}{G_{R} + G_{L}}\ $= $\frac{T}{L + LT}$
j(k-1) = $\frac{G_{R}j_{L}\left( k - 1 \right)}{G_{R} + G_{L}}$ = $\frac{j_{L}\left( k - 1 \right)}{R\left( \frac{1}{R} + \frac{T}{L} \right)}$ = .. = $\frac{\text{Li}\left( k - 1 \right)}{L + RT}$

RC niejawna metoda Eulera
u(k) = uR(k) + uC(k)
uR(k) = $\frac{1}{G_{R}}i\left( k \right)$
uC(k) = $\frac{1}{G_{C}}\left( i\left( k \right) - j_{C}\left( k - 1 \right) \right)$
u(k) = $\frac{1}{G_{R}}i\left( k \right)$ + $\frac{1}{G_{C}}\left( i\left( k \right) - j_{C}\left( k - 1 \right) \right)$
u(k) = $\frac{1}{G_{R}}i\left( k \right)$ + $\frac{1}{G_{C}}i\left( k \right)$$\frac{1}{G_{C}}j_{C}\left( k - 1 \right)$
u(k) = $\frac{1}{G_{R}G_{C}}i\left( k \right) - \ \frac{1}{G_{C}}j_{C}\left( k - 1 \right)$
G =$\ \frac{G_{R}R_{C}}{G_{R} + G_{C}}\ $= $\frac{C}{T + RC}$
j(k-1) = $\frac{G_{R}j_{C}\left( k - 1 \right)}{G_{R} + G_{C}}$ = $\frac{j_{C}\left( k - 1 \right)}{R\left( \frac{1}{R} + \frac{C}{T} \right)}$ = $\frac{\text{Tj}\left( k - 1 \right)}{T + RC} = \ \ $
$= \frac{T}{T + RC} - Gu(k - 1)$


RL jawna metoda Eulera

i(k) = i(k-1) + $\frac{T}{L}u_{L}(k)$
uL(k) = u(k) - uR(k)
uR(k) = Ri(k)
i(k) = i(k-1) + $\frac{T}{L}$(u(k) - Ri(k))
i(k) = i(k-1) + $\frac{T}{L}$u(k) - $\frac{\text{RT}}{L}$i(k)
(1-$\frac{\text{RT}}{L})i\left( k \right) = i\left( k - 1 \right) + \ \frac{T}{L}u(k)$
i(k) = $\frac{T}{L + RT}u(k)$ + $\frac{L}{L + RT}\ $i(k-1)
i(k) = Gu(k) + j(k-1)
j(k-1) = $\frac{L}{L + RT}\ $i(k-1) G=$\frac{T}{L + RT}$

RC jawna metoda Eulera
uC(k) = uC(k-1) + $\frac{T}{C}\ $i(k)
uC(k) = u(k) – uR(k) = u(k) – Ri(k)
u(k) – Ri(k) = u(k) + u(k-1) – Ri(k-1)
Ri(k) + $\frac{T}{C}i(k)$ = u(k) – u(k-1) + Ri(k-1)
i(k)(R +$\ \frac{T}{C}$) = u(k) – u(k-1) + Ri(k-1)
i(k) = $\frac{C}{T + RC}u(k)$ - $\frac{C}{T + RC}u(k - 1)$ + $\frac{\text{CR}}{T + RC}i(k - 1)$
i(k) = Gu(k) + j(k-1)
G = $\frac{C}{T + RC}$ j(k-1) = $- \frac{C}{T + RC}u(k - 1)$ + $\frac{\text{CR}}{T + RC}i(k - 1)$

RL metoda trapezów
i(k) = i(k-1) + $\frac{T}{2L}$uL(k)
uL(k) = u(k) – uR(k)
uR(k) = Ri(k)
i(k) = i(k-1) + $\frac{T}{2L}$(uL(k) + uL(k-1))
i(k) = i(k-1) + $\frac{T}{2L}$(u(k) – Ri(k) + u(k-1) – Ri(k-1))
i(k) = i(k-1) + $\frac{T}{2L}$u(k) - $\frac{\text{TR}}{2L}$i(k) + $\frac{T}{2L}$u(k-1) - $\frac{\text{TR}}{2L}$i(k-1)
i(k)(1+$\frac{\text{TR}}{2L})\ $= i(k-1) + $\frac{T}{2L}$u(k) + $\frac{T}{2L}$u(k-1) - $\frac{\text{TR}}{2L}$i(k-1)
i(k) = i(k-1)($\frac{2L - RT}{2L + RT}$) + $\frac{T}{2L + RT}$u(k) + $\frac{T}{2L + RT}$u(k-1)
i(k) = Gu(k) + j(k-1)
G = $\frac{T}{2L + RT}$ j(k-1) = Gu(k-1) + ($\frac{2L - RT}{2L + RT}$)i(k-1)



RC metoda trapezów
uC(k) = uC(k-1) + $\frac{T}{2C}$(iC(k) + iC(k-1))
uC(k) = u(k) – uR(k) = u(k) – Ri(k)
u(k) – Ri(k) = u(k-1) – Ri(k-1) + $\frac{T}{2C}$(iC(k)+ iC(k-1))
Ri(k) + $\frac{T}{2C}i\left( k \right)$= u(k) - u(k-1) + Ri(k-1) - $\frac{T}{2C}\ $i(k-1)
i(k)(R +$\ \frac{T}{2C}$) = u(k) – u(k-1) + Ri(k-1) - $\frac{T}{2C}$ i(k-1)
i(k) = $\frac{2C}{2RC + T}$u(k) - $\frac{2C}{2RC + T}$u(k-1) + $\left( \frac{2RC - T}{2RC + T} \right)i(k - 1)$
i(k) = Gu(k) + j(k-1)
G = $\frac{2C}{2RC + T}$ j(k-1) = - $\frac{2C}{2RC + T}$u(k-1) + $\left( \frac{2RC - T}{2RC + T} \right)i(k - 1)$


Wyszukiwarka

Podobne podstrony:
ściąga modelowanie do drukowania
ściąga modelowanie do drukowania sciaga na0 pro
sciaga modelowanie
modelowanie, Ściąga1 1, 1 Deterministycznymi nazywamy modele konstruowane przy założeniu że wszystki
Modelowanie i rekonstrukcja elementów SCIĄGA
modelowanie sciaga
MAS sciaga, Informatyka Magisterskie SGGW, Modelowanie Systemów Informatycznych
modelowanie analogowe nasze sciąga
egz kapitan sciaga, PW SiMR, Magisterskie, Semestr II, MiBM, Modelowanie
modelowanko-pytania-sciaga, Zarządzanie procesami
modelowanie, Ściąga1 1 5, 1 Deterministycznymi nazywamy modele konstruowane przy założeniu że wszyst
modelowanie systemow
modelowanie procesˇw transportowych
1 sciaga ppt
Modelowanie biznesowe
MODELOWANIE DANYCH notatki

więcej podobnych podstron