Liczba b odwrotna do $a = - 4\frac{3}{5}$ $b = \frac{1}{a} = \frac{1}{- 4\frac{3}{5}} = \frac{1}{- \frac{23}{5}} = - \frac{5}{23}$
Liczba d przeciwna do $c = \frac{18}{23}$ $d = - c = - \frac{18}{23}$
Suma $b + d = - \frac{5}{23} + \left( - \frac{18}{23} \right) = - \frac{23}{23} = - 1$ a
$\frac{1}{2}\operatorname{}{15 - \operatorname{}\sqrt{5\ }} = \frac{1}{2}\log_{3}\left( \frac{15}{\sqrt{5}} \right) = \frac{1}{2}\log_{3}3\sqrt{5}$
$\frac{15}{\sqrt{5}} = \frac{15\sqrt{5}}{5} = 3\sqrt{5}$ b
|−11| + |7| = 18 $\frac{18}{2} = 9$ 7 − 9 = −2 b
${k^{2} - 12m = \left( 2 - 3\sqrt{2} \right)}^{2} - 12\left( 1 - \sqrt{2} \right) = 4 - 12\sqrt{2} + 18 - 12 + 12\sqrt{2} = 10$ c
$a = 0,4b = > b = \frac{a}{0,4} = \frac{10a}{4} = 2,5a$ b
x3 + 4x ≠ 0 ∖ t x(x2 + 4)≠0 x ≠ 0 ∧ x ≠ −2 ∧ x ≠ 2 d
−3y − mx + 12 = 0 = >3y = −mx + 12 $y = - \frac{1}{3}\text{mx} + 4$ a1 * a2 = −1 a
$\left( - \frac{1}{3}m \right)\left( 6 \right) = - 1$ $- \frac{1}{3}m = - \frac{1}{6}$ $m = \frac{1}{2}\text{\ \ }$
Ghyg
f(0) = a02 + b0 + c = >c = 0 y = −ax2 + bx = x(−ax+b)
Musi się powtórzyć (x+1) dwukrotnie i mają być też 2 różne pierwiastki a to wszystko jest w odp c
x2 + 2x ≠ 0 x(x+2) ≠ 0 ∖ t ∖ t x ≠ 0 ∧ x ≠ −2 x = {−3,2} d
(x+3)(x2+4) = 0 x = −3 ∧ x = −2 ∧ x = 2
$5 = \left( - \frac{1}{3}\ m + 2 \right)0 + \frac{3}{2}m - 1$ $6 = \frac{3}{2}m$ 12 = 3m m = 4 c
b1 = (−1)2 + 3(1+2) = −1 * 2 = −2 b2 = (−1)4 + 3(2+1) = −1 * 3 = −3 ∖ t ∖ t S = −5 a
a7 − a5 = a1 + 7r−(a1 + 5r)=6 = 2r = >r = 3 a10 = a7 + 3r = 14 + 9 = 23 b