WZORY EKONOMETRIA – KOLOKWIUM II
$$S_{U} = \ \sqrt{\frac{\sum_{}^{}u_{t}^{2}}{n - k - 1}}$$
$$u_{t} = y - \hat{y}$$
D2(a) = Su2 • (XT • X)−1
$$V = \frac{S_{u}}{\overset{\overline{}}{y}} \bullet 100\%$$
$$\varphi^{2} = \frac{\sum_{}^{}u_{t}^{2}}{\sum_{}^{}\left( y - \overset{\overline{}}{y} \right)^{2}}$$
$$R^{2} = \frac{\sum_{}^{}\left( \hat{y} - \overset{\overline{}}{y} \right)^{2}}{\sum_{}^{}\left( y - \overset{\overline{}}{y} \right)^{2}}$$
φ2 + R2 = 1
H0 : R = 0
H1 : R ≠ 0
$F = \frac{R^{2}}{1 - R^{2}} \bullet \frac{n - k - 1}{k}$ m1 = k, m2 = n − k − 1
α i m1, m2, st. sw., F* F > F* H0 odrzucamy.
H0 : αi = 0
H1 : αi ≠ 0
$$I_{i} = \frac{\left| a_{i} \right|}{S(a_{i})}$$
α i n − k − 1 st.sw., I*
I > I* H0 odrzucamy.
H0 : Fu = Fn
H1 : Fu ≠ Fn
$$W = \frac{\left\lbrack \sum_{}^{\left\lceil \frac{n}{2} \right\rceil}{a_{n - t - 1}\left( u_{n - t + 1} - u_{t} \right)} \right\rbrack^{2}}{\sum_{}^{}\left( u_{t} - \overset{\overline{}}{u} \right)^{2}}$$
n, γ → W*
W ≥ W*, , brak podst. do odrzucenia H0
H0 : δ2u1 = δ2u2
H1 : δ2u1 < δ2u2
$$F = \frac{{S_{u}^{2}}_{2}}{{S_{u}^{2}}_{1}}$$
$${S_{u}^{2}}_{1} = \frac{1}{n_{1} - k - 1} \bullet \sum_{}^{}\left( u_{t} - \overset{\overline{}}{u_{1}} \right)^{2}$$
$${S_{u}^{2}}_{2} = \frac{1}{n_{2} - k - 1} \bullet \sum_{}^{}\left( u_{t} - \overset{\overline{}}{u_{2}} \right)^{2}$$
α, m1 = n2 − k − 1; m2 = n1 − k − 1 ; → F*
F ≤ F* brak podst. do odrzucenia H0
H0 : ρ1 = 0
H1 : ρ2 ≠ 0
$$d = \ \frac{\sum_{t = 2}^{n}\left( u_{t} - u_{t - 1} \right)^{2}}{\sum_{t = 1}^{n}u_{t}^{2}}$$
γ, n → dl, du
d > du brak podst. odrzucenia H0
d < dl H0odrzucic
dl ≤ d ≤ du test nie rozstrzyga
$$H_{0}:\ \hat{Y} = \rho\left( x_{1},\ldots,x_{n} \right)$$
$$H_{0}:\ \hat{Y} \neq \rho\left( x_{1},\ldots,x_{n} \right)$$
n1, n2, S
$$\frac{\gamma}{2} \rightarrow S_{1}^{*}$$
$$1 - \frac{\gamma}{2} \rightarrow S_{2}^{*}$$
S1* < S < S2* brak podst. od odrzucenia H0