ROZWIĄZANIE RAMY METODĄ PRZEMIESZCZEŃ

  1. ROZWIĄZANIE RAMY METODĄ PRZEMIESZCZEŃ

  1. WYZNACZANIE STOPNIA STATYCZNEJ NIEWYZNACZALNOŚCI

    1. WYZNACZENIE LICZBY STOPNI SWOBODY OBROTU WĘZŁÓW

Uwzględniając, że φA1 = 0 , φ1A = φ13 = φ12 = φ1 , φ31 = φ32, φ21 = φ23 = φ2B = φ2, φB2 = 0, stwierdzam, że wszystkie kąty obrotu końców prętów określone są przez kąty obrotu 2 węzłów φ1 oraz φ2, więc

- liczba stopni swobody obrotu węzłów wynosi nφ=2

1.1.2 WYZNACZENIE LICZBY STOPNI SWOBODY PRZESUWU WĘZŁÓW

MODEL PRZEGUBOWY UKŁADU


w = 7;    p = 7;    r = 6 ∖ nnδ ≥ 2w − p − r = 2 • 7 − 7 − 6 = 1

Należy dodać co najmniej 1 więź.

Dodając więź  IIδ przekształciłem model przegubowy układu w układ geometrycznie niezmienny. Zatem liczba stopni swobody przesuwu układu danego wynosi nδ=1.

Stopień geometrycznej niewyznaczalności wynosi : ng=nδ+nφ=1+2=3

  1. UKŁAD PODSTAWOWY

1.2.1 OGÓLNA POSTAĆ UKŁADU RÓWNAŃ METODY PRZEMIESZCZEŃ


k11φ1 + k12φ2 + k1IIδII + k10 + k1(0T) = 0


k21φ1 + k22φ2 + k2IIδII + k20 + k2(0T) = 0


kII1φ1 + kII2φ2 + kII IIδII + kII0 + kII(0T) = 0

  1. WYZNACZENIE WSPÓLCZYNNIKÓW UKŁADU RÓWNAŃ OD OBCIĄŻEŃ MECHANICZNYCH

1.3.1 ROZWIAZANIE UKŁADU PODSTAWOWEGO OD OBCIĄZENIA DANEGO (φ1 = φ2 = δII = 0)


$${M_{A1}}^{0} = - \frac{p \bullet L^{2}}{12} = - \frac{4 \bullet \frac{16}{25} \bullet 25}{12} = - 5.3333kNm$$


$${M_{1A}}^{0} = + \frac{p \bullet L^{2}}{12} = + \frac{4 \bullet \frac{16}{25} \bullet 5}{12} = + 5.3333kNm$$


M310 = 0


M130 = 0


M210 = 0


M120 = 0


M230 = 0


M320 = 0


$${M_{2B}}^{0} = - \frac{P \bullet a}{2} \bullet \left( 2 - \frac{a}{L} \right) = - \frac{24 \bullet 3}{2} \bullet \left( 2 - \frac{3}{4} \right) = - 45.00kNm$$


$${M_{B2}}^{0} = - \frac{P \bullet a^{2}}{2 \bullet L} = - \frac{24 \bullet 3^{2}}{2 \bullet 4} = - 27.00kNm$$


M20 = −20kNm

Siły równoważne mają wartości:


$$P_{1} = P_{2} = p \bullet \frac{L}{2} = \frac{4 \bullet \frac{16}{25} \bullet 5}{2} = 6.40kN$$


$$P_{3} = \frac{P}{L} = \frac{24}{4} = 6.00kN$$


$$P_{4} = \frac{a}{L} \bullet P = \frac{3}{4} \bullet 24 = 18.00kN$$

1.3.2 ROZWIAZANIE UKŁADU PODSTAWOWEGO OD φ1 = 1

(F = 0         φ2 = δII = 0)

W tym stanie obciążenia do wzorów transformacyjnych podstawiamy:

φ1A1 = φ121 = φ131 = φ1 = 1 pozostałe φij1 = 0 ψij1 = 0 Mij1 = 0

Momenty brzegowe wynoszą:


$${M_{A1}}^{1} = \frac{2EI}{5} \bullet 2 = 0.8\frac{\text{EI}}{m}\ $$


$${M_{1A}}^{1} = \frac{2EI}{5} \bullet 4 = 1.6\frac{\text{EI}}{m}\ $$


M311 = 0 


$${M_{13}}^{1} = \frac{\text{EI}}{4} \bullet 3 = 0.75\frac{\text{EI}}{m}\ $$


$${M_{21}}^{1} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet 2 = 0.7071\frac{\text{EI}}{m}$$


$${M_{12}}^{1} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet 4 = 1.4142\frac{\text{EI}}{m}\ $$


M231 = 0 


M321 = 0 


M2B1 = 0 


MB21 = 0 

1.3.3 ROZWIAZANIE UKŁADU PODSTAWOWEGO OD φ2 = 1

(F = 0         φ1 = δII = 0)

W tym stanie obciążenia do wzorów transformacyjnych podstawiamy:

φ211 = φ2B1 = φ231 = φ2 = 1 pozostałe φij1 = 0 ψij1 = 0 Mij1 = 0

Momenty brzegowe wynoszą:


MA12 = 0


M1A2 = 0 


M312 = 0 


M132 = 0


$${M_{21}}^{2} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet 4 = 1.4142\frac{\text{EI}}{m}$$


$${M_{12}}^{2} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet 3 = 0.7071\frac{\text{EI}}{m}\ $$


$${M_{23}}^{2} = \frac{2EI}{4} \bullet 3 = 1.50\ \frac{\text{EI}}{m}$$


$${M_{32}}^{2} = \frac{2EI}{4} \bullet 0 = 0$$


$${M_{2B}}^{2} = \frac{\text{EI}}{4} \bullet 1 = 0.25\frac{\text{EI}}{m}$$


$${M_{B2}}^{2} = \frac{\text{EI}}{4} \bullet - 1 = - 0.25\frac{\text{EI}}{m}$$

1.3.4 ROZWIAZANIE UKŁADU PODSTAWOWEGO OD δII=1

(F = 0         φ1 = φ2 = 0)

W tym stanie obciążenia do wzorów transformacyjnych podstawiamy: φijII = 0


$$\frac{a}{x} = \frac{4}{3}\ \ \ \ \ \ \ \ \ \ \ \rightarrow \ \ \ \ \ \ \ \ \ a = \frac{4}{3}x$$


$$\frac{a}{1} = \text{tg}\left( \text{beta} \right) = \frac{4}{7}\text{\ \ \ \ } \rightarrow \text{\ \ \ \ \ \ }x = \frac{3}{7};\ \ a = \frac{4}{7} = c\ ;\ d = \frac{5}{4}a = \frac{5}{7};b = \sqrt{2} \bullet \frac{4}{7}$$


$${\psi_{A1}}^{\text{II}} = \frac{{_{A"1"}}^{\text{II}}}{L_{A1}} = \frac{d}{5} = 0.14285\frac{1}{m}\ $$


$${\psi_{13}}^{\text{II}} = \frac{{_{1"3"}}^{\text{II}}}{L_{13}} = \frac{c}{4} = 0.14285\frac{1}{m}$$


$${\psi_{23}}^{I} = \frac{{_{2"3"}}^{\text{II}}}{L_{13}} = \frac{a}{4} = 0.14285\frac{1}{m}$$


$${\psi_{12}}^{\text{II}} = \frac{{_{1"2"}}^{\text{II}}}{L_{12}} = \frac{d}{4\sqrt{2}} = 0.14285\frac{1}{m}$$

Momenty brzegowe wynoszą:


$${M_{A1}}^{\text{II}} = \frac{2EI}{5} \bullet \left( - 6 \right) \bullet 0.14285 = - 0.3429\frac{\text{EI}}{m^{2}}$$


$${M_{1A}}^{\text{II}} = \frac{2EI}{5} \bullet \left( - 6 \right) \bullet 0.14285 = - 0.3429\frac{\text{EI}}{m^{2}}\ $$


$${M_{31}}^{\text{II}} = \frac{\text{EI}}{4} \bullet \left( 0 \right) \bullet 0.14285 = 0\ $$


$${M_{13}}^{\text{II}} = \frac{\text{EI}}{4} \bullet \left( - 3 \right) \bullet 0.14285 = - 0.1071\frac{\text{EI}}{m^{2}}$$


$${M_{21}}^{\text{II}} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet \left( - 6 \right) \bullet 0.14285 = - 0.3030\frac{\text{EI}}{m^{2}}$$


$${M_{12}}^{\text{II}} = \frac{2EI}{4 \bullet \sqrt{2}} \bullet \left( - 6 \right) \bullet 0.14285 = - 0.3030\frac{\text{EI}}{m^{2}}\ $$


$${M_{23}}^{\text{II}} = \frac{2EI}{4} \bullet \left( - 3 \right) \bullet 0.14285 = - 0.2143\ \frac{\text{EI}}{m^{2}}$$


$${M_{32}}^{\text{II}} = \frac{2EI}{4} \bullet 0 = 0$$


$${M_{2B}}^{\text{II}} = \frac{\text{EI}}{4} \bullet 0 = 0$$


$${M_{B2}}^{\text{II}} = \frac{\text{EI}}{4} \bullet 0 = 0$$


δs2II = cos45 • −1 = −0.7071


δP1II = 0


δP2II = 0.7143


δP3II = 1


δP4II = 1

1.3.5 OBLICZENIE WSPÓLCZYNNIKÓW UKŁADU RÓWNAŃ


$$k_{11} = \sum_{j}^{}{M_{1j}}^{1} + k_{1}^{\varphi} = 1.6\frac{\text{EI}}{m} + 0.75\frac{\text{EI}}{m} + 1.4142\frac{\text{EI}}{m} + 6\frac{\text{EI}}{m} = 9.7642\frac{\text{EI}}{m}$$


$$k_{12} = {M_{12}}^{2} = 0.7071\frac{\text{EI}}{m}$$


$$k_{1II} = \sum_{j}^{}{M_{1j}}^{\text{II}} = \left( - 0.3429\frac{\text{EI}}{m^{2}} \right) + \left( - 0.1071\frac{\text{EI}}{m^{2}} \right) + \left( - 0.3030\frac{\text{EI}}{m^{2}} \right) = - 0.7530\frac{\text{EI}}{m^{2}}$$


$$k_{10} = \sum_{j}^{}{M_{1j}}^{0} - {M_{1}}^{0} = 5.3333kNm$$


$$k_{21} = {M_{21}}^{1} = 0.7071\frac{\text{EI}}{m} = k_{12}$$


$$k_{22} = \sum_{j}^{}{M_{2j}}^{2} = 1.4142\frac{\text{EI}}{m} + 1.50\ \frac{\text{EI}}{m} + 0.25\frac{\text{EI}}{m} = 3.1642\frac{\text{EI}}{m}$$


$$k_{2II} = \sum_{j}^{}{M_{2j}}^{\text{II}} = \left( - 0.3030\frac{\text{EI}}{m^{2}} \right) + \left( - 0.2143\ \frac{\text{EI}}{m^{2}} \right) = - 0.5173\frac{\text{EI}}{m^{2}}$$


$$k_{20} = \sum_{j}^{}{M_{2j}}^{0} - {M_{2}}^{0} = - 45.00kNm - \left( - 20kNm \right) = - 25kNm$$


$$k_{II1} = - \sum_{\text{ij}}^{}{{(M_{\text{ij}}}^{1} + {M_{\text{ji}}}^{1}}) \bullet {\psi_{\text{ij}}}^{\text{II}} = = - \left\lbrack \left( 0.8\frac{\text{EI}}{m} + 1.6\frac{\text{EI}}{m} \right) \bullet 0.14285\frac{1}{m} + \left( 0.75\frac{\text{EI}}{m} + 0 \right) \bullet 0.14285\frac{1}{m} + \left( 0.7071\frac{\text{EI}}{m} + 1.4142\frac{\text{EI}}{m} \right) \bullet 0.14285\frac{1}{m} \right\rbrack = - 0.7530\frac{\text{EI}}{m^{2}} = k_{1II}$$


$$k_{II2} = - \sum_{\text{ij}}^{}{{(M_{\text{ij}}}^{2} + {M_{\text{ji}}}^{2}}) \bullet {\psi_{\text{ij}}}^{\text{II}} = = - \left\lbrack \left( 0.7071\frac{\text{EI}}{m} + 1.4142\frac{\text{EI}}{m} \right) \bullet 0.14285\frac{1}{m} + \left( 1.50\frac{\text{EI}}{m}\ + 0 \right) \bullet 0.14285\frac{1}{m} \right\rbrack = - 0.5173\frac{\text{EI}}{m^{2}} = k_{2II}$$


$$k_{\text{II\ II}} = - \sum_{\text{ij}}^{}{{(M_{\text{ij}}}^{\text{II}} + {M_{\text{ji}}}^{\text{II}}}) \bullet {\psi_{\text{ij}}}^{\text{II}} + {k_{2}}^{\delta} \bullet {\delta_{s2}}^{\text{II}} \bullet {\delta_{s2}}^{\text{II}} = - \left\lbrack \left( - 0.3429\frac{\text{EI}}{m^{2}} - 0.3429\frac{\text{EI}}{m^{2}} \right) \bullet 0.14285\frac{1}{m} + \left( - 0.1071\frac{\text{EI}}{m^{2}}\ + 0 \right) \bullet 0.14285\frac{1}{m} + \left( - 0.3030\frac{\text{EI}}{m^{2}}\ - 0.3030\frac{\text{EI}}{m^{2}} \right) \bullet 0.14285\frac{1}{m} + \left( - 0.2143\ \frac{\text{EI}}{m^{2}}\ + 0 \right) \bullet 0.14285\frac{1}{m} \right\rbrack + 4\frac{\text{EI}}{m^{3}} \bullet \left( - 0.7071 \right) \bullet \left( - 0.7071 \right) = 0.2305\frac{\text{EI}}{m^{3}} + 2\frac{\text{EI}}{m^{3}} = 2.2305\frac{\text{EI}}{m^{3}}$$


$$k_{II0} = - \sum_{\text{ij}}^{}{{(M_{\text{ij}}}^{0} + {M_{\text{ji}}}^{0}}) \bullet {\psi_{\text{ij}}}^{\text{II}} - \sum_{P}^{}{P_{P} \bullet}{\delta_{P}}^{\text{II}} = = - \left\lbrack \left( - 5.3333kNm + 5.3333kNm \right) \bullet 0.14285\frac{1}{m} \right\rbrack - \left\lbrack 6.40kN \bullet 0.7143 + 6.00kN \bullet 1 + 18.00kN \bullet 1 \right\rbrack = - 28.5715kN$$

  1. WYZNACZENIE WSPÓLCZYNNIKÓW UKŁADU RÓWNAŃ OD OBCIĄŻEŃ NIEMECHANICZNYCH

1.4.1 WYZNACZENIE MOMENTÓW BRZEGOWYCH W UKŁADZIE PODSTAWOWYM OD ZMIAN TEMPERATURY PO WYSOKOŚCI PRZEKROJU PRĘTA

PRZYJETO PRZEKRÓJ I200 oraz 2I200 o EI=4387 kNm2

Momenty brzegowe wynoszą:


$${M_{A1}}^{\varphi T} = - \frac{2EI}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet ( - 16 - 16) = 0.00384\frac{\text{EI}}{m}$$


$${M_{1A}}^{\varphi T} = \frac{2EI}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet \left( - 16 - 16 \right) = - 0.00384\frac{\text{EI}}{m}\ $$


M31φT = 0 


M13φT = 0


$${M_{21}}^{\varphi T} = \frac{2EI}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet ( - 20 - 20) = - 0.0048\frac{\text{EI}}{m}$$


$${M_{12}}^{\varphi T} = - \frac{2EI}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet ( - 20 - 20) = 0.0048\frac{\text{EI}}{m}\ $$


M23φT = 0


M32φT = 0


$${M_{2B}}^{\varphi T} = - \frac{\text{EI}}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet \left( 10 + 10 \right) = - 0.0012\frac{\text{EI}}{m}$$


$${M_{B2}}^{\varphi T} = \frac{\text{EI}}{0.2} \bullet 1.2 \bullet 10^{- 5} \bullet (10 + 10) = 0.0012\frac{\text{EI}}{m}$$

1.4.2 OBLICZENIE WSPÓLCZYNNIKÓW UKŁADU RÓWNAŃ


$$k_{1(OT)} = \sum_{j}^{}{M_{1j}}^{(OT)} = {M_{1A}}^{\varphi T} + {M_{13}}^{\varphi T} + {M_{12}}^{\varphi T} = - 0.00384\frac{\text{EI}}{m} + 0 + 0.0048\frac{\text{EI}}{m} = 9.6 \bullet 10^{- 4\ }\frac{\text{EI}}{m}\ $$


$$k_{2(OT)} = \sum_{j}^{}{M_{2j}}^{(OT)} = {M_{21}}^{\varphi T} + {M_{23}}^{\varphi T} + {M_{2B}}^{\varphi T} = - 0.0048\frac{\text{EI}}{m} + 0 - 0.0012\frac{\text{EI}}{m} = - 6 \bullet 10^{- 3\ }\frac{\text{EI}}{m}\ $$


$$k_{II(OT)} = - \sum_{\text{ij}}^{}{{(M_{\text{ij}}}^{(0T)} + {M_{\text{ji}}}^{(0T)}}) \bullet {\psi_{\text{ij}}}^{\text{II}} = 0$$

  1. POSTAĆ SZCZEGÓŁOWA UKŁADU RÓWNAŃ OD OBCIĄŻEŃ MECHANICZNYCH


$$9.7642\frac{\text{EI}}{m}\varphi_{1} + 0.707\frac{\text{EI}}{m}1\varphi_{2} - 0.7530\frac{\text{EI}}{m^{2}}\delta_{\text{II}} + 5.3333kNm = 0$$


$$0.7071\frac{\text{EI}}{m}\varphi_{1} + 3.1642\frac{\text{EI}}{m}\varphi_{2} - 0.5173\frac{\text{EI}}{m^{2}}\delta_{\text{II}} - 25kNm = 0$$


$$- 0.7530\frac{\text{EI}}{m^{2}}\varphi_{1} - 0.5173\frac{\text{EI}}{m^{2}}\varphi_{2} + 2.2305\frac{\text{EI}}{m^{3}}\delta_{\text{II}} - 28.5715kNm = 0$$

  1. ROZWIĄZANIE UKŁADU RÓWNAŃ OD OBCIĄŻEŃ MECHANICZNYCH


$$\varphi_{1} = - 0.1295\frac{\text{kN}m^{2}}{\text{EI}}$$


$$\varphi_{2} = 10.4116\frac{\text{kN}m^{2}}{\text{EI}}$$


$$\delta_{\text{II}} = 15.1804\frac{\text{kN}m^{3}}{\text{EI}}$$

1.5.2 MOMENTY BRZEGOWE I SIŁY W WIĘZIACH SPRĘŻYSTYCH

-0.1295 f1 10.4116 f2 15.1804 dII
M 1   M 2   M II   Mo   M rz
M A1 0.8000 -0.1038 0.0000 0.0000 -0.3429 -5.2055 -5.3333   -10.6426
M 1A 1.6000 -0.2075 0.0000 0.0000 -0.3429 -5.2055 5.3333   -0.0797
M 31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   0.0000
M 13 0.7500 -0.0973 0.0000 0.0000 -0.1071 -1.6259 0.0000   -1.7231
M 21 0.7071 -0.0917 1.4142 14.7269 -0.3030 -4.5998 0.0000   10.0354
M 12 1.4142 -0.1834 0.7071 7.3635 -0.3030 -4.5998 0.0000   2.5803
M 23 0.0000 0.0000 1.5000 15.6204 -0.2143 -3.2532 0.0000   12.3672
M 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   0.0000
M 2B 0.0000 0.0000 0.2500 2.6034 0.0000 0.0000 -45.0000   -42.3966
M B2 0.0000 0.0000 -0.2500 -2.6034 0.0000 0.0000 -27.0000   -29.6034


$$S_{\varphi 1} = k^{\varphi} \bullet \varphi_{1} = 6\frac{\text{EI}}{m} \bullet \left( - 0.1295\frac{\text{kN}m^{2}}{\text{EI}} \right) = - 0.7770\ kNm$$


$$S_{\delta 2} = k^{\delta 2} \bullet \left( {\delta_{s2}}^{\text{II}} \bullet \delta_{\text{II}} \right) = 4\frac{\text{EI}}{m^{3}}\mathbf{\bullet}\left( - 0.7071 \bullet 15.1804\frac{\text{kN}m^{3}}{\text{EI}} \right) = - 42.9362\ kN$$

  1. BRZEGOWE SIŁY TNĄCE I OSIOWE

Pręt A-1


$$\sum_{}^{}M_{A} \rightarrow \text{\ \ \ V}_{1A} = - \frac{\left( M_{A1} + M_{1A} \right)}{5m} - 4 \bullet \frac{4}{5} \bullet \frac{4}{5} \bullet \frac{5^{2}}{2} = - \frac{\left( - 10.6426 - 0.0797 \right)}{5m} - 2.56 \bullet \frac{5}{2} = - 4,2555\ kN$$


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{A1} = - \frac{\left( M_{A1} + M_{1A} \right)}{5m} + 4 \bullet \frac{4}{5} \bullet \frac{4}{5} \bullet \frac{5^{2}}{2} = - \frac{\left( - 10.6426 - 0.0797 \right)}{5m} + 2.56 \bullet \frac{5}{2} = 8.5445\ kN$$


$$\sum_{}^{}X \rightarrow \ \ \ \ N_{1A} + 4 \bullet \frac{4}{5} \bullet \frac{3}{5} \bullet 5 - N_{A1} = 0\ \ \ \ \ N_{1A} = N_{A1} - 9.6$$

Pręt 1-3


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{31} = - \frac{\left( M_{13} \right)}{4m} = - \frac{\left( - 1.7231 \right)}{4m} = 0.4308\ kN$$


$$\sum_{}^{}M_{3} \rightarrow \text{\ \ \ V}_{13} = - \frac{\left( M_{13} \right)}{4m} = - \frac{\left( - 1.7231 \right)}{4m} = 0.4308\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{13}{= N}_{31}\text{\ \ \ \ }$$

Pręt 1-2


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{21} = - \frac{\left( M_{12} + M_{21} \right)}{4 \bullet \sqrt{2}m} = - \frac{\left( 2.5803 + 10.0354 \right)}{4 \bullet \sqrt{2}m} = - 2.2302\ kN$$


$$\sum_{}^{}M_{2} \rightarrow \text{\ \ \ V}_{12} = - \frac{\left( M_{12} + M_{21} \right)}{4 \bullet \sqrt{2}m} = - \frac{\left( 2.5803 + 10.0354 \right)}{4 \bullet \sqrt{2}m} = - 2.2302\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{12}{= N}_{21}\text{\ \ \ \ }$$

Pręt 2-3


$$\sum_{}^{}M_{2} \rightarrow \text{\ \ \ V}_{32} = - \frac{\left( M_{23} \right)}{4m} = - \frac{\left( 12.3672 \right)}{4m} = - 3.0918\ kN$$


$$\sum_{}^{}M_{3} \rightarrow \text{\ \ \ V}_{23} = - \frac{\left( M_{23} \right)}{4m} = - \frac{\left( 12.3672 \right)}{4m} = - 3.0918\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{23}{= N}_{32}\text{\ \ \ \ }$$

Pręt 2-B


$$\sum_{}^{}Y \rightarrow \text{\ \ \ V}_{2B} = 24.00\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{2B}{= N}_{B2}\text{\ \ \ \ }$$

WĘZEŁ 3


$$\sum_{}^{}M_{3} = 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = 0\ \ \ \ \ \ N_{32} = N_{23} = V_{31} = 0.4308\ kN$$


$$\sum_{}^{}X = 0\ \ \ \ \ N_{31} = N_{13} = - V_{32} = 3.0918\ kN\ $$

WĘZEŁ 2


$$\sum_{}^{}M_{2} = - M_{21} - M_{23} - M_{2B} - 20 = - \lbrack 10.0354 + 12.3672 - 42.3966 + 20\rbrack = - 0.006 \approx 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = N_{23} - V_{2B} + 0.7071V_{21} + 0.7071N_{21} - 0.7071S_{\delta 2} = 0$$


$$N_{21} = N_{12} = - \frac{1}{0.7071} \bullet \left\lbrack 0.4308 - 24 + 0.7071 \bullet \left( - 2.2302 \right) - 0.7071 \bullet \left( - 42.9362 \right) \right\rbrack = - 7,3738\ kN\ $$


$$\sum_{}^{}X = N_{2B} + + 0.7071S_{\delta 2} + V_{23} + 0.7071V_{21} - 0.7071N_{21} = 0$$


N2B = NB2 = −[0.7071 • (−42.9362) − 3.0918 + 0.7071 • (−2.2302) − 0.7071 • (−7.3738)]=30.1904 kN

WĘZEŁ 1


$$\sum_{}^{}M_{1} = - M_{1A} - M_{13} - M_{12} - S_{\varphi 1} = - ( - 0.0797) - ( - 1.7231) - 2.5803 - \left( - 0.7770 \right) = - 0.0005 \approx 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = - \frac{4}{5} \bullet N_{1A} + \frac{3}{5} \bullet V_{1A} - 0.7071 \bullet V_{12} - 0.7071N_{12} - V_{13} = 0$$


N1A = 1.25 • [0.6•(−4,2555)−0.7071•(−2.2302)−0.7071•(−7,3738)−0.4308 ] = 4.7586 kN


N1A = NA1 − 9.6           NA1 = 9.6 + N1A = 9.6 + 4, 7586 = 14.3586 kN 

WĘZEŁ PODPOROWY B


$$\sum_{}^{}M_{B} = M_{B} - M_{B2} = 0\ \ \ \ \ \ M_{B} = - 29.6034\ kNm$$


$$\sum_{}^{}Y = {0\ \ \ \ \ \ \ \ V}_{B} = 0$$


$$\sum_{}^{}X = N_{B} - N_{B2} = 0\ \ \ \ \ \ \ \ \ \ \ \ N_{B} = 30.1904\ kN\ $$

WĘZEŁ PODPOROWY A


$$\sum_{}^{}M_{A} = M_{A} - M_{A1} = 0\ \ \ \ \ M_{A} = - 10.6426kNm\ $$


$$\sum_{}^{}X = \frac{3}{5}N_{A1} + \frac{4}{5} \bullet V_{1A} + N_{A} = 0$$


NA = −[0.6•14.3586+0.8•8.5445] = −15.4508 kN


$$\sum_{}^{}Y = \frac{4}{5}N_{A1} - \frac{3}{5} \bullet V_{1A} + V_{A} = 0$$


VA = −0.8 • 14.3586 + 0.6 • 8.5445 = −6.3602 kN

  1. MOMENTY ZGINAJĄCE

Pręt A-1


$$M\left( 2.5 \right) = M_{A} + \text{\ \ \ V}_{A1} \bullet 2.5 - 2.56 \bullet \frac{{2.5}^{2}}{2} = - 10.6426 + 8.5445 \bullet 2.5 - 8 = 2.7187\ kNm$$


V(2.5) = VA1 − 2.56 • 2.5 = 8.5445 − 2.56 • 2.5 = 2.1445 kN

  1. SPRAWDZENIE

Dla X6 = 1


$$\sum_{}^{}M_{A} = 0$$


MA + x6 = 0


MA = −x6 = −1


$${_{6}}^{o} = \sum_{p}^{}{\int_{}^{}M_{6} \bullet \frac{M^{\text{rz}}}{\text{EI}}}dx + \frac{S_{\varphi 1}S_{6}}{k^{\varphi}} = 0$$


$$\frac{5}{6 \bullet 2EI} \bullet \left\lbrack \left( - 10.6426 \right) \bullet \left( - 1 \right) + 4 \bullet 2.7187 \bullet \left( - 1 \right) + 0.0797 \bullet \left( - 1 \right) \right\rbrack + \frac{- 1 \bullet - 0.7770}{6 \bullet 4387} = 9.4978 \bullet 10^{- 5} \bullet \left( - 0.3119 \right) + \frac{- 1 \bullet - 0.7770}{6 \bullet 4387} = - 1.05 \bullet 10^{- 7} \approx 0\ \ \ \ OK!\ $$

Dla X5 = 1


$${_{5}}^{o} = \sum_{p}^{}{\int_{}^{}M_{5} \bullet \frac{M^{\text{rz}}}{\text{EI}}}dx = 0$$


$$\frac{4 \bullet \sqrt{2}}{6 \bullet 2EI} \bullet \left\lbrack 2.5803 \bullet 1 + 4 \bullet ( - 3.5926) \bullet 0.5 + ( - 10.0354) \bullet 0 \right\rbrack + \frac{4}{6 \bullet EI} \bullet \left\lbrack \left( - 1.7231 \right) \bullet \left( - 1 \right) + 4 \bullet ( - 0.8616) \bullet \left( - 0.5 \right) + 0 \bullet 0 \right\rbrack = 1.0745 \bullet 10^{- 4} \bullet - 4.6049 + 1.5196 \bullet 10^{- 4} \bullet 3.4443 = 0.000028599\ \approx 0\ \ \ \ \ \ \ OK!\ $$

  1. POSTAĆ SZCZEGÓŁOWA UKŁADU RÓWNAŃ OD OBCIĄŻEŃ NIEMECHANICZNYCH


$$9.7642\frac{\text{EI}}{m}\varphi_{1} + 0.707\frac{\text{EI}}{m}1\varphi_{2} - 0.7530\frac{\text{EI}}{m^{2}}\delta_{\text{II}} + 9.6 \bullet 10^{- 4\ }\frac{\text{EI}}{m} = 0$$


$$0.7071\frac{\text{EI}}{m}\varphi_{1} + 3.1642\frac{\text{EI}}{m}\varphi_{2} - 0.5173\frac{\text{EI}}{m^{2}}\delta_{\text{II}} - 6 \bullet 10^{- 3\ }\frac{\text{EI}}{m} = 0$$


$$- 0.7530\frac{\text{EI}}{m^{2}}\varphi_{1} - 0.5173\frac{\text{EI}}{m^{2}}\varphi_{2} + 2.2305\frac{\text{EI}}{m^{3}}\delta_{\text{II}} + 0 = 0$$


φ1 = −0.00021


φ2 = 0.002008


δII = 0.000394 m

1.10.2 MOMENTY BRZEGOWE I SIŁY W WIĘZIACH SPRĘŻYSTYCH

-0.00021 f1 0.002008 f2 0.000394 dII [EI/m] [kNm]
M 1   M 2   M II   M(OT) M rz M rz
M A1 0.8000 -0.0002 0 0.0000 -0.3429 -0.0001 0.00384 0.0035 15.3545
M 1A 1.6000 -0.0003 0 0.0000 -0.3429 -0.0001 -0.00384 -0.0043 -18.8641
M 31 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000
M 13 0.7500 -0.0002 0 0.0000 -0.1071 0.0000 0.00000 -0.0002 -0.8774
M 21 0.7071 -0.0002 1.4142 0.0028 -0.3030 -0.0001 -0.00480 -0.0022 -9.6514
M 12 1.4142 -0.0003 0.7071 0.0014 -0.3030 -0.0001 0.00480 0.0058 25.4446
M 23 0.0000 0.0000 1.5 0.0030 -0.2143 -0.0001 0.00000 0.0029 12.7223
M 32 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000
M 2B 0.0000 0.0000 0.25 0.0005 0.0000 0.0000 -0.00120 -0.0007 -3.0709
M B2 0.0000 0.0000 -0.25 -0.0005 0.0000 0.0000 0.00120 0.0007 3.0709


$${S_{\varphi 1}}^{T} = k^{\varphi} \bullet \varphi_{1} = 6\frac{\text{EI}}{m} \bullet \left( - 0.00021 \right) = - 0.0013\frac{\text{EI}}{m} = - 5.7031\ kNm$$


$${S_{\delta 2}}^{T} = k^{\delta 2} \bullet \left( {\delta_{s2}}^{\text{II}} \bullet \delta_{\text{II}} \right) = 4\frac{\text{EI}}{m^{3}} \bullet \left( - 0.7071 \bullet 0.000394\ m \right) = - 0.001144\frac{\text{EI}}{m^{2}} = - 4.8889\ kN$$

Pręt A-1


$$\sum_{}^{}M_{A} \rightarrow \text{\ \ \ V}_{1A} = - \frac{\left( M_{A1} + M_{1A} \right)}{5m} = - \frac{\left( 15.3545 - 18.8641 \right)}{5m} = 0.7019\ kN$$


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{A1} = - \frac{\left( M_{A1} + M_{1A} \right)}{5m} = - \frac{\left( 15.3545 - 18.8641 \right)}{5m} = 0.7019\ kN$$


$$\sum_{}^{}X \rightarrow \ \ \ \ N_{1A} - N_{A1} = 0\ \ \ \ \ N_{1A} = N_{A1}$$

Pręt 1-3


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{31} = - \frac{\left( M_{13} \right)}{4m} = - \frac{\left( - 0.8774 \right)}{4m} = 0.2194\ kN$$


$$\sum_{}^{}M_{3} \rightarrow \text{\ \ \ V}_{13} = - \frac{\left( M_{13} \right)}{4m} = - \frac{\left( - 0.8774 \right)}{4m} = 0.2194\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{13}{= N}_{31}\text{\ \ \ \ }$$

Pręt 1-2


$$\sum_{}^{}M_{1} \rightarrow \text{\ \ \ V}_{21} = - \frac{\left( M_{12} + M_{21} \right)}{4 \bullet \sqrt{2}m} = - \frac{\left( 25.4446 - 9.6514 \right)}{4 \bullet \sqrt{2}m} = - 2.7917\ kN$$


$$\sum_{}^{}M_{2} \rightarrow \text{\ \ \ V}_{12} = - \frac{\left( M_{12} + M_{21} \right)}{4 \bullet \sqrt{2}m} = - \frac{\left( 25.4446 - 9.6514 \right)}{4 \bullet \sqrt{2}m} = - 2.7917\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{12}{= N}_{21}\text{\ \ \ \ }$$

Pręt 2-3


$$\sum_{}^{}M_{2} \rightarrow \text{\ \ \ V}_{32} = - \frac{\left( M_{23} \right)}{4m} = - \frac{\left( 12.7223 \right)}{4m} = - 3.1806\ kN$$


$$\sum_{}^{}M_{3} \rightarrow \text{\ \ \ V}_{23} = - \frac{\left( M_{23} \right)}{4m} = - \frac{\left( 12.7223 \right)}{4m} = - 3.1806\ kN$$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{23}{= N}_{32}\text{\ \ \ \ }$$

Pręt 2-B


$$\sum_{}^{}M_{B} \rightarrow \text{\ \ \ V}_{2B} = - \frac{\left( M_{B2} + M_{2B} \right)}{4m} = - \frac{\left( 3.0709 - 3.0709 \right)}{4m} = 0\ \ $$


$$\sum_{}^{}X \rightarrow \text{\ \ \ \ \ \ N}_{2B}{= N}_{B2}\text{\ \ \ \ }$$

WĘZEŁ 3


$$\sum_{}^{}M_{3} = 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = 0\ \ \ \ \ \ N_{32} = N_{23} = V_{31} = 0.2194\ \ kN$$


$$\sum_{}^{}X = 0\ \ \ \ \ N_{31} = N_{13} = - V_{32} = 3.1806\ kN\ $$

WĘZEŁ 2


$$\sum_{}^{}M_{2} = - M_{21} - M_{23} - M_{2B} = - \lbrack - 9.6514 + 12.7223 - 3.0709\rbrack = 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = N_{23} - V_{2B} + 0.7071V_{21} + 0.7071N_{21} - 0.7071{S_{\delta 2}}^{T} = 0$$


$$N_{21} = N_{12} = - \frac{1}{0.7071} \bullet \left\lbrack 0.7019 - 0 + 0.7071 \bullet \left( - 2.7917 \right) - 0.7071 \bullet \left( - 4.8889 \right) \right\rbrack = - 3.0898\ kN\ $$


$$\sum_{}^{}X = N_{2B} + + 0.7071S_{\delta 2} + V_{23} + 0.7071V_{21} - 0.7071N_{21} = 0$$


N2B = NB2 = −[0.7071 • (−4.8889) − 3.1806 + 0.7071 • (−2.7917) − 0.7071 • (−3.0898)]=6.4268 kN

WĘZEŁ 1


$$\sum_{}^{}M_{1} = - M_{1A} - M_{13} - M_{12} - {S_{\varphi 1}}^{T} = - ( - 18.8641) - ( - 0.8774) - 25.4446 - \left( - 5.7031 \right) = 0 - \text{Spe}l\text{nione\ to}z\text{samo}s\text{ciowo}$$


$$\sum_{}^{}Y = - \frac{4}{5} \bullet N_{1A} + \frac{3}{5} \bullet V_{1A} - 0.7071 \bullet V_{12} - 0.7071N_{12} - V_{13} = 0$$


N1A = 1.25 • [0.6•(0.7019)−0.7071•(−2.7917)−0.7071•(−3.0898)−0.2194 ] = 5.4507 kN


N1A = NA1 = 5.4507kN 

WĘZEŁ PODPOROWY B


$$\sum_{}^{}M_{B} = M_{B} - M_{B2} = 0\ \ \ \ \ \ M_{B} = 3.0709\ kNm$$


$$\sum_{}^{}Y = {0\ \ \ \ \ \ \ \ V}_{B} = 0$$


$$\sum_{}^{}X = N_{B} - N_{B2} = 0\ \ \ \ \ \ \ \ \ \ \ \ N_{B} = 6.4268\ kN\ $$

WĘZEŁ PODPOROWY A


$$\sum_{}^{}M_{A} = M_{A} - M_{A1} = 0\ \ \ \ \ M_{A} = 15.3545\ kNm\ $$


$$\sum_{}^{}X = \frac{3}{5}N_{A1} + \frac{4}{5} \bullet V_{1A} + N_{A} = 0$$


NA = −[0.6•5.4507+0.8•0.7019] = −3.8319 kN


$$\sum_{}^{}Y = \frac{4}{5}N_{A1} - \frac{3}{5} \bullet V_{1A} + V_{A} = 0$$


VA = −0.8 • 5.4507 + 0.6 • 0.7019 = −3.9394 kN

  1. MOMENTY ZGINAJĄCE

Pręt A-1


M(2.5) = MA +  VA1 • 2.5 = 15.3545 + 0.7019  • 2.5 = 17.1093 kNm

  1. SPRAWDZENIE

Dla X6 = 1


$$\sum_{}^{}M_{A} = 0$$


MA + x6 = 0


MA = −x6 = −1


$${_{6}}^{o} = \sum_{p}^{}{\int_{}^{}M_{6} \bullet \frac{M^{T}}{\text{EI}}}dx + \sum_{p}^{}{\int_{}^{}M_{6}d\varphi_{1}} + \sum_{S}^{}\frac{{S_{\varphi 1}}^{T}S_{6}}{k^{\varphi}} = 0$$


$$\frac{5}{6 \bullet 2EI} \bullet \left\lbrack \left( 15.3545 \right) \bullet \left( - 1 \right) + 4 \bullet 17.1093 \bullet \left( - 1 \right) + 18.8641 \bullet \left( - 1 \right) \right\rbrack + \left( - 5 \right) \bullet 1.2 \bullet 10^{- 5} \bullet \frac{- 32}{0.2} + \frac{- 1 \bullet - 5.7031}{6 \bullet \text{EI}} = - 9.75 \bullet 10^{- 3} + 9.6 \bullet 10^{- 3} + 2.1667 \bullet 10^{- 4} = 6.667 \bullet 10^{- 5} \approx 0\ \ \ \ OK!\ $$

Dla X5 = 1


$${_{5}}^{o} = \sum_{p}^{}{\int_{}^{}M_{6} \bullet \frac{M^{T}}{\text{EI}}}dx + \sum_{p}^{}{\int_{}^{}M_{6}d\varphi_{1}} = 0$$


$$\frac{4 \bullet \sqrt{2}}{6 \bullet 2EI} \bullet \left\lbrack - 9.6514 \bullet 1 + 4 \bullet ( - 17.5475) \bullet 0.5 + ( - 25.446) \bullet 0 \right\rbrack + \frac{4}{6 \bullet EI} \bullet \left\lbrack \left( - 0.8774 \right) \bullet \left( - 1 \right) + 4 \bullet ( - 0.4387) \bullet \left( - 0.5 \right) + 0 \bullet 0 \right\rbrack + \left( \frac{4\sqrt{2}}{2} \right) \bullet 1.2 \bullet 10^{- 5} \bullet \frac{- 40}{0.2} = 1.0745 \bullet 10^{- 4} \bullet - 44.7464 + 1.5196 \bullet 10^{- 4} \bullet 1.7548 - 6.7883 \bullet 10^{- 3} = - 0.0113 \approx 0\ \ \ \ \ \ OK!\ $$


Wyszukiwarka

Podobne podstrony:
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃOD TEMPERATURY projekt43
Obliczanie ramy metodą przemieszczeń
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ OD OSIADANIA PODPÓR projekt42
Obliczenia ramy Metodą przemieszczeń temperatura projekt39
Obliczenia ramy Metodą przemieszczeń projekt38
Obliczanie ramy metodą przemieszczeń obliczenie momentów oraz sił tnących korzystając z równania róż
Obliczenia ramy Metodą przemieszczeń temperatura projekt39
belka obroty i przesuwy metoda przemieszczeń
Linie wpływu Metoda przemieszczeń mmp belka lw
Metoda przemieszczeń
wzór z rozwiązaniem termodynamika III przemiany
cwicz mechanika budowli metoda przemieszczen rama ugiecie
Metoda przemieszczen projekt4
Obliczanie ram metodą przemieszczeń wersja komputerowa
metoda przemieszczen0002
metoda przemieszczen0001

więcej podobnych podstron