Projekt ramy PSM

Metoda MENABREI


$$\sum_{}^{}{M_{A} = 0 = M_{A} + M + P_{1} \bullet cos45 \bullet 2a + P_{1} \bullet sin45 \bullet a - P_{2} \bullet 2a + 3q \bullet (\frac{1}{3} \bullet 3a + 2a)} - H \bullet 5a = M_{A} + 2qa^{2} + \sqrt{2} \bullet qa^{2} + \frac{\sqrt{2}}{2}qa^{2} - 4qa^{2} + 9qa^{2} - H \bullet 5a$$


$$M_{A} = H \bullet 5a - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2}$$


$$\sum_{}^{}F_{X} = R_{X} + P_{1} \bullet cos45 = 0$$


$$R_{X} = - \frac{\sqrt{2}}{2}qa$$

$M^{\text{AB}} = M_{A} - R_{X} \bullet x = H \bullet 5a - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} + \frac{\sqrt{2}}{2}q\text{ax}$ $\frac{\partial M^{\text{AB}}}{\partial H} = 5a$

$M^{\text{ED}} = - Hx + 3qa \bullet \frac{1}{3}x = - Hx + \text{qax}$ $\frac{\partial M^{\text{ED}}}{\partial H} = - x$


$$M^{\text{DC}} = - H\left( 3a + xcos45 \right) + 3\text{qa}\left( \frac{1}{3}3a + xcos45 \right) - 2qaxcos45 = \backslash n$$

$\frac{\partial M^{\text{DC}}}{\partial H} = \left( - 3a - \frac{\sqrt{2}}{2}x \right)$


$$M^{\text{CB}} = - H\left( 4a + xcos45 \right) + 3\text{qa}\left( \frac{1}{3}3a + a + xcos45 \right) - 2qa\left( a + xcos45 \right) + \text{qax} =$$

=$- H \bullet 4a - \ H \bullet \frac{\sqrt{2}}{2}x + 6qa^{2} + \frac{3\sqrt{2}}{2}qax - 2qa^{2} - \sqrt{2}qax + qax =$

$= H \bullet \left( - 4a - \frac{\sqrt{2}}{2}x \right) + 4qa^{2} + \frac{\sqrt{2}}{2}\text{qax} + qax$ $\frac{\partial M^{\text{CB}}}{\partial H} = \left( - 4a - \frac{\sqrt{2}}{2}x \right)$

$\frac{\partial V}{\partial H_{i}} = 0 = \frac{1}{\text{EJ}}\sum_{i = 1}^{n}{\int_{0}^{l}{M(x_{i})}}\frac{\partial M_{x_{i}}}{\partial H_{i}}d_{x_{i}}$ - Twierdzenie MENABREI


$$\frac{\partial V}{\partial H_{i}} = 0 = \frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( \ H \bullet 5a - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} + \frac{\sqrt{2}}{2}\text{qax} \right) \bullet 5a \bullet \text{dx}} \right) + \left( \int_{0}^{3a}{\left( - Hx + qax\ \right) \bullet \left( - x \right)\text{dx}} \right) + \begin{pmatrix} \int_{0}^{a\sqrt{2}}{\left( - H \bullet 3a - H \bullet \frac{\sqrt{2}}{2}x + 3qa^{2} + \frac{\sqrt{2}}{2}q\text{ax} \right) \bullet \left( - 3a - \frac{\sqrt{2}}{2}x \right)\text{dx}} \\ \\ \end{pmatrix} + \left( \int_{0}^{a\sqrt{2}}\left( - H \bullet 4a - H \bullet \frac{\sqrt{2}}{2}x + 4qa^{2} + \frac{\sqrt{2}}{2}qax + qax \right) \bullet \left( - 4a - \frac{\sqrt{2}}{2}x \right)\text{dx} \right) \right\rbrack$$

$\frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( \ H \bullet 25a^{2} - 35qa^{3} - \frac{15\sqrt{2}}{2}qa^{3} + \frac{5\sqrt{2}}{2}qa^{2}x \right) \bullet \text{dx}} \right) + \left( \int_{0}^{3a}{\left( Hx^{2} - \text{qa}x^{2}\ \right) \bullet \text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( 9H \bullet a^{2} + H \bullet \frac{3\sqrt{2}}{2}ax - 9qa^{3} + \frac{3\sqrt{2}}{2}qa^{2}x + H \bullet \frac{3\sqrt{2}}{2}\text{ax} + \frac{1}{2}Hx^{2} - \frac{3\sqrt{2}}{2}qa^{2}x - \frac{1}{2}\text{qa}x^{2} \right) \bullet \text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}\left( 16Ha^{2} + H \bullet 2\sqrt{2}ax - 16qa^{3} + 2\sqrt{2}qa^{2}x - 4qa^{2}x + H \bullet 2\sqrt{2}\text{ax} + \frac{1}{2}Hx^{2} - 2\sqrt{2}qa^{2}x - \frac{1}{2}\text{qa}x^{2} - \frac{\sqrt{2}}{2}\text{qa}x^{2} \right) \bullet \text{dx} \right) \right\rbrack$=

$= \frac{1}{\text{EJ}}\left\lbrack \left( \left( \ H \bullet 25a^{2}x - 35qa^{3}x - \frac{15\sqrt{2}}{2}qa^{3}x + \frac{5\sqrt{2}}{4}qa^{2}x^{2} \right)_{0}^{a} \right) + \left( \left( H\frac{x^{3}}{3} - \text{qa}\frac{x^{3}}{3} \right)_{0}^{3a} \right) + \left( \left( 9H \bullet a^{2}x + H \bullet \frac{3\sqrt{2}}{4}ax^{2} - 9qa^{3}x + \frac{3\sqrt{2}}{4}qa^{2}x^{2} + H \bullet \frac{3\sqrt{2}}{4}ax^{2} + \frac{1}{6}Hx^{3} - \frac{3\sqrt{2}}{4}qa^{2}x^{2} - \frac{1}{6}\text{qa}x^{3} \right)_{0}^{a\sqrt{2}} \right) + \left( \left( 16Ha^{2}x + H \bullet \sqrt{2}ax^{2} - 16qa^{3}x + \sqrt{2}qa^{2}x^{2} - 2qa^{2}x^{2} + H \bullet \sqrt{2}ax^{2} + \frac{1}{6}Hx^{3} - \sqrt{2}qa^{2}x^{2} - \frac{1}{6}\text{qa}x^{3} - \frac{\sqrt{2}}{6}\text{qa}x^{3} \right)_{0}^{a\sqrt{2}} \right) \right\rbrack$=

$= \frac{1}{\text{EJ}}\left\lbrack \left( \ H \bullet 25a^{3} - 35qa^{4} - \frac{15\sqrt{2}}{2}qa^{4} + \frac{5\sqrt{2}}{4}qa^{4} \right) + \left( 9Ha^{3} - 9qa^{4} \right) + \left( 9H \bullet a^{3}\sqrt{2} + H \bullet \frac{3\sqrt{2}}{2}a^{3} - 9\sqrt{2}qa^{4} + \frac{3\sqrt{2}}{2}qa^{4} + H \bullet \frac{3\sqrt{2}}{2}a^{3} + \frac{\sqrt{2}}{3}Ha^{3} - \frac{3\sqrt{2}}{24}qa^{4} - \frac{\sqrt{2}}{3}qa^{4} \right) + \left( 16\sqrt{2}Ha^{3} + H \bullet 2\sqrt{2}a^{2} - 16\sqrt{2}qa^{4} - 2\sqrt{2}qa^{4} - 4qa^{4} + H \bullet 2\sqrt{2}a^{3} + \frac{\sqrt{2}}{3}Ha^{3} - 2\sqrt{2}qa^{4} - \frac{\sqrt{2}}{3}\text{qa}a^{4} - \frac{2}{3}qa^{4} \right) \right\rbrack$=

=$\frac{1}{\text{EJ}}\left\lbrack \ 25Ha^{3} - 35qa^{4} - \frac{25\sqrt{2}}{4}qa^{4} + 9Ha^{3} - 9qa^{4} + \frac{37}{3}\sqrt{2}Ha^{3} - \frac{37}{3}\sqrt{2}qa^{4} + \frac{61}{3}\sqrt{2}Ha^{3} - \frac{61}{3}\sqrt{2}qa^{4} - \frac{14}{3}qa^{4} \right\rbrack$=


$$34Ha^{3} + \frac{98}{3}\sqrt{2}Ha^{3} - \frac{467}{12}\sqrt{2}qa^{4} - \frac{146}{3}qa^{4} = 0$$


$$Ha^{3}\left( 34 + \frac{98}{3}\sqrt{2} \right) = qa^{4}\left( \frac{467}{12}\sqrt{2} + \frac{146}{3} \right)$$


$$H = \frac{1244}{962}\text{qa} \cong 1,293qa = 1,3qa$$


$$M_{A} = H \bullet 5a - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} = 1,3qa \bullet 5a - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} = - 2,6qa^{2}$$


$$\sum_{}^{}{F_{Y} = R_{Y} - P_{1} \bullet cos45 +}P_{2} - 3qa + H = 0$$


$$R_{Y} = P_{1} \bullet cos45 - P_{2} + 3qa - H = \frac{\sqrt{2}}{2}qa - 2qa + 3qa - 1,3qa = 0,4qa$$

Metoda MAXWELLA – MOHRA

Stan “0”

Stan “1”


$$\sum_{}^{}{M_{A} = 0 = M_{A} + M + P_{1} \bullet cos45 \bullet 2a + P_{1} \bullet sin45 \bullet a - P_{2} \bullet 2a + 3q \bullet (\frac{1}{3} \bullet 3a + 2a)}$$


$$M_{A} + 2qa^{2} + \sqrt{2} \bullet qa^{2} + \frac{\sqrt{2}}{2}qa^{2} - 4qa^{2} + 9qa^{2} = 0$$


$$M_{A} = - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2}$$


$$\sum_{}^{}{M_{A} = 0 = M_{A}} - H \bullet 5a$$


MA = H • 5a


$$\sum_{}^{}F_{X} = R_{\text{AX}} + P_{1} \bullet cos45 = 0$$


$$R_{\text{AX}} = - \frac{\sqrt{2}}{2} \bullet \text{qa}$$

$M^{\text{AB}} = M_{A} - R_{X} \bullet x = - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} + \frac{\sqrt{2}}{2}\text{qax}$


$$M^{\text{ED}} = 3qa \bullet \frac{1}{3}x = qax$$


$$M^{\text{DC}} = 3\text{qa}\left( \frac{1}{3}3a + \text{xcos}45 \right) - 2\text{qaxcos}45 = \backslash n$$


$$M^{\text{CB}} = 3qa\left( \frac{1}{3}3a + a + xcos45 \right) - 2qa\left( a + xcos45 \right) + qax =$$

=$6qa^{2} + \frac{3\sqrt{2}}{2}qax - 2qa^{2} - \sqrt{2}qax + qax =$

$= 4qa^{2} + \frac{\sqrt{2}}{2}\text{qax} + qax$


$$\sum_{}^{}F_{X} = R_{\text{AX}} = 0$$


RAX = 0

MAB = MA = H • 5a

MED = −Hx

$M^{\text{DC}} = - H\left( 3a + \text{xcos}45 \right) = - H \bullet 3a - H \bullet \frac{\sqrt{2}}{2}x$


$$M^{\text{CB}} = - H\left( 4a + xcos45 \right) = - H \bullet 4a - \ H \bullet \frac{\sqrt{2}}{2}x$$

Równanie Maxwella – Mohra


α10 + α11H = 0


$$\alpha_{10} = \frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( 5a \right) \bullet \left( - 7qa^{2} - \frac{3\sqrt{2}}{2}qa^{2} + \frac{\sqrt{2}}{2}\text{qax} \right)\text{dx}} \right) + \left( \int_{0}^{3a}{\left( - x \right) \bullet \left( \text{qa}x \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( - 3a - \frac{\sqrt{2}}{2}x \right) \bullet \left( 3qa^{2} + \frac{\sqrt{2}}{2}\text{qax} \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( - 4a - \ \frac{\sqrt{2}}{2}x \right) \bullet \left( 4qa^{2} + \frac{\sqrt{2}}{2}\text{qax} + qax \right)\text{dx}} \right) \right\rbrack = \frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( - 35qa^{3} - \frac{15\sqrt{2}}{2}qa^{3} + \frac{5\sqrt{2}}{2}qa^{2}x \right)\text{dx}} \right) + \left( \int_{0}^{3a}{\text{qa}x^{2}\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( - 9qa^{3} - \frac{3\sqrt{2}}{2}qa^{2}x - \frac{3\sqrt{2}}{2}qa^{2}x - \frac{1}{2}\text{qa}x^{2} \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( 16qa^{3} - 2\sqrt{2}qa^{2}x - 4qa^{2}x - 2\sqrt{2}qa^{2}x - \frac{1}{2}\text{qa}x^{2} - \frac{\sqrt{2}}{2}\text{qa}x^{2} \right)\text{dx}} \right) \right\rbrack =$$


$$\alpha_{10} = \frac{1}{\text{EJ}}\left\lbrack - \frac{467}{12}\sqrt{2}qa^{4} - \frac{146}{3}qa^{4} \right\rbrack$$


$$\alpha_{11} = \frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( 5a \right) \bullet \left( 5a \right)\text{dx}} \right) + \left( \int_{0}^{3a}{\left( - x \right) \bullet \left( - x \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( - 3a - \frac{\sqrt{2}}{2}x \right) \bullet \left( - 3a - \frac{\sqrt{2}}{2}x \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( - 4a - \ \frac{\sqrt{2}}{2}x \right) \bullet \left( - 4a - \ \frac{\sqrt{2}}{2}x \right)\text{dx}} \right) \right\rbrack = \frac{1}{\text{EJ}}\left\lbrack \left( \int_{0}^{a}{\left( 25a^{2} \right)\text{dx}} \right) + \left( \int_{0}^{3a}{x^{2}\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( 9a^{2} + \frac{3\sqrt{2}}{2}ax + \frac{3\sqrt{2}}{2}ax + \frac{1}{2}x^{2} \right)\text{dx}} \right) + \left( \int_{0}^{a\sqrt{2}}{\left( 16a^{2} + \ 2\sqrt{2}x^{2} + 2\sqrt{2}x^{2} + \frac{1}{2}x^{2} \right)\text{dx}} \right) \right\rbrack = \frac{1}{\text{EJ}}\left\lbrack \left( \left( 25a^{2}x \right)_{0}^{a} \right) + \left( \left( \frac{x^{3}}{3} \right)_{0}^{3a} \right) + \left( \left( 9a^{2}x + \frac{3\sqrt{2}}{4}ax^{2} + \frac{3\sqrt{2}}{4}ax^{2} + \frac{1}{6}x^{3} \right)_{0}^{a\sqrt{2}} \right) + \left( \left( 16a^{2}x + \ \frac{2\sqrt{2}}{3}x^{3} + \frac{2\sqrt{2}}{3}x^{3} + \frac{1}{6}x^{3} \right)_{0}^{a\sqrt{2}} \right) \right\rbrack = \frac{1}{\text{EJ}}\left\lbrack 25a^{3} + 9a^{3} + 9{\sqrt{2}a}^{3} + \frac{3\sqrt{2}}{2}a^{3} + \frac{3\sqrt{2}}{2}a^{3} + \frac{\sqrt{2}}{3}a^{3} + 16\sqrt{2}a^{3} + \ 2\sqrt{2}a^{3} + 2\sqrt{2}a^{3} + \frac{\sqrt{2}}{3}a^{3} \right\rbrack = \frac{1}{\text{EJ}}\left\lbrack 34a^{3} + \frac{98\sqrt{2}}{3}a^{3} \right\rbrack$$


$$\alpha_{11} = \frac{1}{\text{EJ}}\left\lbrack 34a^{3} + \frac{98\sqrt{2}}{3}a^{3} \right\rbrack$$


$$\frac{1}{\text{EJ}}\left\lbrack - \frac{467}{12}\sqrt{2}qa^{4} - \frac{146}{3}qa^{4} \right\rbrack + \frac{1}{\text{EJ}}\left\lbrack 34a^{3} + \frac{98\sqrt{2}}{3}a^{3} \right\rbrack \bullet H = 0$$


$$34Ha^{3} + \frac{98}{3}\sqrt{2}Ha^{3} - \frac{467}{12}\sqrt{2}qa^{4} - \frac{146}{3}qa^{4} = 0$$


$$Ha^{3}\left( 34 + \frac{98}{3}\sqrt{2} \right) = qa^{4}\left( \frac{467}{12}\sqrt{2} + \frac{146}{3} \right)$$


$$H = \frac{1244}{962}qa \cong 1,293qa = 1,3qa$$

Dwie metody dają identyczne rozwiązanie.


Wyszukiwarka

Podobne podstrony:
Projekt ramy monolitycznej
do druku, Projekt ramy
Projekt ramy monolitycznej 2
Projekt ramy statycznie niewyznaczalnej2
Projekt ramy statycznie niewyznaczalnej2, AGH IMIR Mechanika i budowa maszyn, II ROK, Wytrzymałość m
projekt ramy zelbetowej woda
projekt ramy zelbetowej rewrite
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃOD TEMPERATURY projekt43
23 Zasady projektowania i kształtowania prostych ustrojów konstrukcyjnych (ramy, fundamenty, ściany
OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ OD OSIADANIA PODPÓR projekt42
Obliczenia ramy Metodą przemieszczeń temperatura projekt39
Obliczenia ramy Metodą przemieszczeń projekt38
Obliczanie ramy metodą przemieszczeń obliczenie momentów oraz sił tnących korzystając z równania róż
Obliczenia ramy Metodą przemieszczeń projekt38(1)
SN028a Informacje uzupełniające Projekt wstępny pionowego stężenia w budynku wielokondygnacyjnym o s

więcej podobnych podstron