Ćwiczenie 54
Badanie zjawiska rezonansu elektromagnetycznego
1. Zestaw przyrządów:
Woltomierz M-3860D
Amperomierz V560
C1= 63,70nF
C2= 17,64nF
2.Cel ćwiczenia:
Zapoznanie się ze zjawiskiem rezonansu elektromagnetycznego w szeregowym
obwodzie drgającym RLC
Wykreślenie krzywych rezonansowych I = I (f).
Wyznaczenie częstotliwości rezonansowych obwodu z krzywych rezonansowych
i przy pomocy oscyloskopu.
Wyznaczenie przesunięcia fazowego między natężeniem prądu i napięciem.
Przebieg ćwiczenia
3.Przebieg ćwiczenia:
Ćwiczenie polega na zmierzeniu zależności natężenia prądu płynącego przez amperomierz od częstotliwości dla stałej wartości napięcia zasilającego obwód i na podstawie tych zależności zbadanie zjawiska rezonansu elektromagnetycznego.
Pomiary zostały wykonane dla 2 różnych pojemności kondensatora (C1 = 63,70 nF , C2 = 17,64 nF) przy oporze dla C1-Rmin,C1-Rmax, C2-Rmin. Stałe napięcie zasilające w obwodzie RLC wynosiło U=2 [V].
Układ pomiarowy podłączono według następujących schematów:
Tabela 1. Wartości pomiaru.
C1Rmin | C2Rmin | C1Rmax |
---|---|---|
f [Hz] | I [mA] | f [Hz] |
587 | 14,98 | 406 |
582 | 14,95 | 410 |
578 | 14,87 | 412 |
575 | 14,74 | 413 |
572 | 14,58 | 415 |
565 | 14,46 | 422 |
563 | 14,01 | 427 |
560 | 13,72 | 432 |
531 | 13,35 | 440 |
505 | 10,81 | 447 |
487 | 6,93 | 464 |
452 | 5,16 | 480 |
434 | 4,47 | 500 |
416 | 3,95 | 535 |
387 | 3,26 | 565 |
365 | 2,85 | 596 |
347 | 2,57 | 615 |
313 | 2,10 | 657 |
213 | 1,17 | 405 |
195 | 1,04 | 403 |
589 | 14,98 | 400 |
590 | 14,93 | 391 |
591 | 14,90 | 384 |
594 | 14,79 | 378 |
601 | 14,38 | 370 |
613 | 13,43 | 365 |
620 | 12,57 | 356 |
625 | 12,13 | 340 |
627 | 12,10 | 325 |
638 | 10,27 | 307 |
649 | 10,08 | 291 |
660 | 9,22 | 277 |
675 | 8,29 | 254 |
697 | 7,16 | 236 |
726 | 6,01 | 208 |
750 | 5,33 | 195 |
784 | 4,58 | |
830 | 3,86 | |
880 | 3,31 | |
953 | 2,76 | |
1070 | 1,88 | |
Uc=14,98 | Uc=15,11 | Uc=10,25 |
fr=589 | fr=405 | fr=580 |
Pomiary wykonałyśmy dla dwóch różnych wartości pojemności kondensatora C1, C2, , przy stałym oporze maksymalnym i minimalnym.
f – częstotliwość prądu w układzie w [Hz]
I – natężenie prądu w [mA]
Uc – napięcie odczytane na woltomierzu podczas rezonansu w [V]
fr – częstotliwość rezonansowa w [Hz]
Rezonans w tabelce zaznaczono pogrubioną czcionką
Wykresy zależności natężenia prądu I [mA] od częstotliwości f [Hz]
C1 Rmin
C1 Rmax
C2 Rmin
Wzór na częstotliwość rezonansową:
fr =
Po przekształceniu otrzymujemy wzór na indukcyjność cewki L:
L =
gdzie:
L – indukcyjność cewki [H]
C – pojemność kondensatora [F]
fr – częstotliwość rezonansowa [Hz]
Rachunek jednostek:
[H] = [1/ (F * Hz2) ] = [1/ ((C/V) * (1/s)2)] = [ (V * s2) / C] = [(V * s2) / (A* s)] = [(V * s) / A] = [(kg * m2) / (s2 * A2)] = [Wb / A] = [H]
Przykładowe obliczenia:
Dla
C1=63,70nF = 63,70*10-9F
L1=$\ \frac{1}{4 \bullet {3.14}^{2} \bullet 63,70 \bullet 10^{- 9} \bullet 589^{2}} = 1,15H$
Dla
C2=17,64nF = 17,64*10-9F
L2= $\frac{1}{4 \bullet {3.14}^{2} \bullet 17,64 \bullet 10^{- 9} \bullet 657^{2}} = 8,76H$
Błąd L z różniczki zupełnej.
∆L1= $\frac{1}{4\pi^{2}*C^{2}*\text{fr}^{2}}*C + \frac{1}{4\pi^{2}*C*{f_{r}}^{3}}*\text{fr}$=$\frac{1}{4*{3,14}^{2}*{63,70*10( - 9)}^{2}*195^{2}}*0,05 + \frac{1}{4\pi^{2}*63,70*10\hat{} - 9*195^{3}}$*∆0,02=0,058mH
∆L2= 0,025mH
L1=∆L1/L=0,058/1.15=0.051
L1=1,15 ± 5,1%
L2 = 8,76 ± 2,8%
Współczynnik dobroci układu wyraża się wzorem:
Q = Uc / U
gdzie:
Uc – napięcie na kondensatorze podczas rezonansu [V]
U – napięcie zasilające układ [V]
Q1= 17,06/2=8,53
Q2= 12,13/2 =6,065
Q3= 11,83/2 =5,915
Rachunek błędów:
ΔU = kl.* zakres/100 = 0,1[V]
ΔUc = 0,1[V]
Metodą różniczki zupełnej otrzymujemy błąd bezwzględny:
∆Q1 = (Uc / U2) * ∆U + 1/U * ∆Uc = (17,06/4)*0,003+1/2*0,1=0,062
∆Q2 = 0,059
∆Q3 = 0,058
Błąd względny:
Q1 = 8,53 ± 0,7 %
Q2 = 6,065 ± 0,9 %
Q3 = 5,915 ± 0.9 %
Wnioski
O rezonansie decydują oprócz częstotliwości napięcia zasilającego tylko parametry L i C obwodu , rezonans można osiągnąć przez zmianę tych parametrów . Rezystancja nie wpływa na fakt powstawania rezonansu, ma znaczenie tylko jako czynnik ograniczający wartość prądu i wpływa na kształt charakterystyki prądowej . Im mniejsza jest rezystancja R tym większy jest prąd rezonansowy.
Przeprowadzone pomiary wykazały, że przy zmniejszaniu pojemności kondensatora C,. Przy zachowaniu stałej pojemności kondensatora C i zmianie oporu R, zmienia się kształt krzywej.
Na wartość współczynnika dobroci Q ma wpływ pojemność kondensatora C – im ona mniejsza, tym współczynnik Q większy.
Małe błędy względne świadczą o tym, że pomiary są dokładne.