7) Obliczanie niepewności standardowych u(D) i u(I0) z prawa przenoszenia niepewności:
$$u\left( D \right) = \sqrt{\begin{matrix}
\left( \frac{16 \bullet \pi^{2} \bullet M \bullet R_{1}}{T_{1}^{2} - T_{2}^{2}} \bullet u\left( R_{1} \right) \right)^{2} + \left( \frac{16 \bullet \pi^{2} \bullet M \bullet R_{2}}{T_{1}^{2} - T_{2}^{2}} \bullet u(R_{2)} \right)^{2} + \left( \frac{16 \bullet \pi^{2} \bullet M \bullet T_{1} \bullet \left( R_{1}^{2} - R_{2}^{2} \right)}{\left( T_{1}^{2} - T_{2}^{2} \right)^{2}} \bullet u\left( T_{1} \right) \right)^{2} \\
+ \left( \frac{16 \bullet \pi^{2} \bullet M \bullet T_{2} \bullet \left( R_{1}^{2} - R_{2}^{2} \right)}{\left( T_{1}^{2} - T_{2}^{2} \right)^{2}} \bullet u(T_{2}) \right)^{2} \\
\end{matrix}}$$
$u\left( D \right) = \sqrt{\begin{matrix} \left( \frac{16 \bullet \left( 3,14 \right)^{2} \bullet 0,194kg \bullet 0,02m}{\left( 0,12s \right)^{2} - \left( 1,77s \right)^{2}} \bullet 5,8 \bullet 10^{- 4}m \right)^{2} + \left( \frac{16 \bullet \left( 3,14 \right)^{2} \bullet 0,194kg \bullet 0,09}{\left( 0,12s \right)^{2} - \left( 1,77s \right)^{2}} \bullet 5,8 \bullet 10^{- 4}m \right)^{2} \\ \\ + \left( \frac{16 \bullet \left( 3,14 \right)^{2} \bullet 0,194kg \bullet 0,12s \bullet {(\left( 0,02m \right)}^{2} - \left( 0,09m \right)^{2})}{{{(\left( 0,02m \right)}^{2} - \left( 0,09m \right)^{2})}^{2}} \bullet 4,2 \bullet 10^{- 2}s \right)^{2} + \left( \frac{16 \bullet \left( 3,14 \right)^{2} \bullet 0,194kg \bullet 1,77s \bullet \left( \left( 0,02 \right)^{2} - \left( 0,09 \right)^{2} \right)}{\left( \left( 1,12 \right)^{2} - \left( 1,77 \right)^{2} \right)^{2}} \bullet 6 \bullet 10^{- 2} \right)^{2} \\ \\ \end{matrix}}$
$$u\left( D \right) = \sqrt{3,41761 \bullet 10^{- 7}} = 0,000584603\ \left\lbrack N \bullet m \right\rbrack \approx 0,00058\ \left\lbrack N \bullet m \right\rbrack\backslash n$$
$${I_{0} = \frac{2 \bullet M \bullet R_{1}^{2} \bullet T_{2}^{2} - 2 \bullet M \bullet R_{2}^{2} \bullet T_{1}^{2}}{T_{1}^{2} - T_{2}^{2}}\backslash n}{\frac{\partial}{\partial R_{1}} = \frac{\partial}{\partial R_{1}}\left\lbrack \frac{2 \bullet M \bullet R_{1}^{2} \bullet T_{2}^{2}}{T_{1}^{2} - T_{2}^{2}} - \frac{2 \bullet M \bullet R_{2 \bullet T_{1}^{2}}^{2}}{T_{1}^{2} - T_{2}^{2}} \right\rbrack = \frac{2 \bullet M \bullet T_{2}^{2} \bullet 2R_{1}}{T_{1}^{2} - T_{2}^{2}} = \frac{4 \bullet M \bullet T_{2}^{2} \bullet R_{1}}{T_{1}^{2} - T_{2}^{2}}\backslash n}\backslash n$$
8) Obliczanie niepewności standardowych u(αmax), u(r) i u(m) metodą typu B:
9) Obliczanie niepewności standardowej prędkości pocisku u(V) z prawa przenoszenia niepewności:
$${\frac{\partial}{\partial D}\frac{}{} = \backslash n}\backslash n{\frac{\partial}{\partial\alpha_{\max}}\frac{D \bullet \alpha_{\max} \bullet T}{2 \bullet \pi \bullet m \bullet r} = \frac{D \bullet T_{1}}{2 \bullet \pi \bullet m \bullet r}\backslash n}\backslash n{\frac{\partial}{\partial T_{1}}\frac{D \bullet \alpha_{\max} \bullet T}{2 \bullet \pi \bullet m \bullet r} = \frac{D \bullet \alpha_{\max}}{2 \bullet \pi \bullet m \bullet r}\backslash n}\backslash n{\frac{\partial}{\partial m}\frac{D \bullet \alpha_{\max} \bullet T}{2 \bullet \pi \bullet m \bullet r} = - \frac{D \bullet \alpha_{\max} \bullet T_{1}}{2 \bullet \pi \bullet r \bullet m^{2}}\backslash n}\backslash n{\frac{\partial}{\partial r}\frac{D \bullet \alpha_{\max} \bullet T}{2 \bullet \pi \bullet m \bullet r} = - \frac{D \bullet \alpha_{\max} \bullet T_{1}}{2 \bullet \pi \bullet m \bullet r^{2}}\backslash n}$$